A Multi-task Network for Anatomy Identification in Endoscopic Pituitary Surgery

被引:14
作者
Das, Adrito [1 ]
Khan, Danyal Z. [1 ,2 ]
Williams, Simon C. [1 ,2 ]
Hanrahan, John G. [1 ,2 ]
Borg, Anouk [2 ]
Dorward, Neil L. [2 ]
Bano, Sophia [1 ,3 ]
Marcus, Hani J. [1 ,2 ]
Stoyanov, Danail [1 ,3 ]
机构
[1] UCL, Wellcome EPSRC Ctr Intervent & Surg Sci, London, England
[2] Natl Hosp Neurol & Neurosurg, Dept Neurosurg, London, England
[3] UCL, Dept Comp Sci, London, England
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT IX | 2023年 / 14228卷
基金
英国工程与自然科学研究理事会;
关键词
minimally invasive surgery; semantic segmentation; surgical AI; surgical vision;
D O I
10.1007/978-3-031-43996-4_45
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pituitary tumours are in an anatomically dense region of the body, and often distort or encase the surrounding critical structures. This, in combination with anatomical variations and limitations imposed by endoscope technology, makes intra-operative identification and protection of these structures challenging. Advances in machine learning have allowed for the opportunity to automatically identifying these anatomical structures within operative videos. However, to the best of the authors' knowledge, this remains an unaddressed problem in the sellar phase of endoscopic pituitary surgery. In this paper, PAINet (Pituitary Anatomy Identification Network), a multi-task network capable of identifying the ten critical anatomical structures, is proposed. PAINet jointly learns: (1) the semantic segmentation of the two most prominent, largest, and frequently occurring structures (sella and clival recess); and (2) the centroid detection of the remaining eight less prominent, smaller, and less frequently occurring structures. PAINet utilises an EfficientNetB3 encoder and a U-Net++ decoder with a convolution layer for segmentation and pooling layer for detection. A dataset of 64-videos (635 images) were recorded, and annotated for anatomical structures through multi-round expert consensus. Implementing 5-fold cross-validation, PAINet achieved 66.1% and 54.1% IoU for sella and clival recess semantic segmentation respectively, and 53.2% MPCK-20% for centroid detection of the remaining eight structures, improving on single-task performances. This therefore demonstrates automated identification of anatomical critical structures in the sellar phase of endoscopic pituitary surgery is possible.
引用
收藏
页码:472 / 482
页数:11
相关论文
共 16 条
[1]   Automating Periodontal bone loss measurement via dental landmark localisation [J].
Danks, Raymond P. ;
Bano, Sophia ;
Orishko, Anastasiya ;
Tan, Hong Jin ;
Sancho, Federico Moreno ;
D'Aiuto, Francesco ;
Stoyanov, Danail .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (07) :1189-1199
[2]   Improving Anatomical Plausibility in Medical Image Segmentation via Hybrid Graph Neural Networks: Applications to Chest X-Ray Analysis [J].
Gaggion, Nicolas ;
Mansilla, Lucas ;
Mosquera, Candelaria ;
Milone, Diego H. ;
Ferrante, Enzo .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) :546-556
[3]   Contrastive Semi-Supervised Learning for Domain Adaptive Segmentation Across Similar Anatomical Structures [J].
Gu, Ran ;
Zhang, Jingyang ;
Wang, Guotai ;
Lei, Wenhui ;
Song, Tao ;
Zhang, Xiaofan ;
Li, Kang ;
Zhang, Shaoting .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (01) :245-256
[4]   A Brief Survey on Semantic Segmentation with Deep Learning [J].
Hao, Shijie ;
Zhou, Yuan ;
Guo, Yanrong .
NEUROCOMPUTING, 2020, 406 :302-321
[5]   Exploring Intra- and Inter-Video Relation for Surgical Semantic Scene Segmentation [J].
Jin, Yueming ;
Yu, Yang ;
Chen, Cheng ;
Zhao, Zixu ;
Heng, Pheng-Ann ;
Stoyanov, Danail .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (11) :2991-3002
[6]   Anatomy-aided deep learning for medical image segmentation: a review [J].
Liu, Lu ;
Wolterink, Jelmer M. ;
Brune, Christoph ;
Veldhuis, Raymond N. J. .
PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (11)
[7]   Artificial Intelligence for Intraoperative Guidance Using Semantic Segmentation to Identify Surgical Anatomy During Laparoscopic Cholecystectomy [J].
Madani, Amin ;
Namazi, Babak ;
Altieri, Maria S. ;
Hashimoto, Daniel A. ;
Rivera, Angela Maria ;
Pucher, Philip H. ;
Navarrete-Welton, Allison ;
Sankaranarayanan, Ganesh ;
Brunt, L. Michael ;
Okrainec, Allan ;
Alseidi, Adnan .
ANNALS OF SURGERY, 2022, 276 (02) :363-369
[8]  
Maier-Hein L, 2022, Arxiv, DOI arXiv:2206.01653
[9]   Pituitary society expert Delphi consensus: operative workflow in endoscopic transsphenoidal pituitary adenoma resection [J].
Marcus, Hani J. ;
Khan, Danyal Z. ;
Borg, Anouk ;
Buchfelder, Michael ;
Cetas, Justin S. ;
Collins, Justin W. ;
Dorward, Neil L. ;
Fleseriu, Maria ;
Gurnell, Mark ;
Javadpour, Mohsen ;
Jones, Pamela S. ;
Koh, Chan Hee ;
Horsfall, Hugo Layard ;
Mamelak, Adam N. ;
Mortini, Pietro ;
Muirhead, William ;
Oyesiku, Nelson M. ;
Schwartz, Theodore H. ;
Sinha, Saurabh ;
Stoyanov, Danail ;
Syro, Luis, V ;
Tsermoulas, Georgios ;
Williams, Adam ;
Winder, Mark J. ;
Zada, Gabriel ;
Laws, Edward R. .
PITUITARY, 2021, 24 (06) :839-853
[10]   A Multi-Task Convolutional Neural Network for Semantic Segmentation and Event Detection in Laparoscopic Surgery [J].
Marullo, Giorgia ;
Tanzi, Leonardo ;
Ulrich, Luca ;
Porpiglia, Francesco ;
Vezzetti, Enrico .
JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (03)