Deep feature network with multi-scale fusion for highly congested crowd counting

被引:1
|
作者
Yan, Leilei [1 ]
Zhang, Li [1 ]
Zheng, Xiaohan [1 ]
Li, Fanzhang [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
关键词
Crowd counting; Multi-scale; Dilated convolution framework; Gridding; Low-level spatial information; High-level semantic information; PARTIALLY OCCLUDED HUMANS; BAYESIAN COMBINATION; MULTIPLE; IMAGE;
D O I
10.1007/s13042-023-01941-3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a deep feature network with multi-scale fusion (DFNet) for addressing the problem of crowd counting in highly congested noisy scenes. DFNet contains three modules: feature encoder, feature decoder and feature fusion. The feature encoder uses a VGG-16-based convolutional neural network (CNN) that encodes features from images and forms a kind of low-level spatial information. The feature decoder is a multi-column dilated convolutional neural network (McDCNN) with different dilation rates that can capture a multi-scale contextual information, decode the low-level spatial information and generate a kind of high-level semantic information. Furthermore, the multi-column architecture in McDCNN can effectively relieve the "gridding" issue presented in the dilated convolution framework. The feature fusion block uses a simple and effective network architecture to sufficiently incorporate the low-level spatial and the high-level semantic information for facilitating high-quality density map estimation and performing accurate crowd counting. Extensive experiments on several highly challenging crowd counting datasets are conducted. Experimental results show that DFNet is comparable with recent state-of-the-art approaches.
引用
收藏
页码:819 / 835
页数:17
相关论文
共 50 条
  • [1] Deep feature network with multi-scale fusion for highly congested crowd counting
    Leilei Yan
    Li Zhang
    Xiaohan Zheng
    Fanzhang Li
    International Journal of Machine Learning and Cybernetics, 2024, 15 : 819 - 835
  • [2] Double multi-scale feature fusion network for crowd counting
    Liu, Qian
    Fang, Jiongtao
    Zhong, Yixiong
    Wang, Cunbao
    Qi, Youwei
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (34) : 81831 - 81855
  • [3] Multi-scale dilated convolution of feature Fusion Network for Crowd counting
    Donghua Liu
    Guodong Wang
    Guangtao Zhai
    Multimedia Tools and Applications, 2022, 81 : 37939 - 37952
  • [4] Multi-scale dilated convolution of feature Fusion Network for Crowd counting
    Liu, Donghua
    Wang, Guodong
    Zhai, Guangtao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (26) : 37939 - 37952
  • [5] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Li, Zhaoxin
    Lu, Shuhua
    Dong, Yishan
    Guo, Jingyuan
    VISUAL COMPUTER, 2023, 39 (03): : 1045 - 1056
  • [6] MSFFA: a multi-scale feature fusion and attention mechanism network for crowd counting
    Zhaoxin Li
    Shuhua Lu
    Yishan Dong
    Jingyuan Guo
    The Visual Computer, 2023, 39 : 1045 - 1056
  • [7] MSFFNet: multi-scale feature fusion network with semantic optimization for crowd counting
    Rohra, Avinash
    Yin, Baoqun
    Bilal, Hazrat
    Kumar, Aakash
    Ali, Munawar
    Li, Yang
    PATTERN ANALYSIS AND APPLICATIONS, 2025, 28 (01)
  • [8] MLANet: multi-level attention network with multi-scale feature fusion for crowd counting
    Xiong, Liyan
    Zeng, Yijuan
    Huang, Xiaohui
    Li, Zhida
    Huang, Peng
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (05): : 6591 - 6608
  • [9] Context-Aware Multi-Scale Aggregation Network for Congested Crowd Counting
    Huang, Liangjun
    Shen, Shihui
    Zhu, Luning
    Shi, Qingxuan
    Zhang, Jianwei
    SENSORS, 2022, 22 (09)
  • [10] A multi-scale fusion and dual attention network for crowd counting
    De Zhang
    Yiting Wang
    Xiaoping Zhou
    Liangliang Su
    Multimedia Tools and Applications, 2025, 84 (13) : 11269 - 11294