共 42 条
NON-UNIFORM BERRY-ESSEEN-TYPE INEQUALITIES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT
被引:0
作者:
Wang, X. I. A. O. Q. I. A. N. G.
[1
]
Wu, J. I. U. J. I. A. N. G.
[2
]
Huang, C. H. U. N. M. A. O.
[2
]
机构:
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
来源:
JOURNAL OF MATHEMATICAL INEQUALITIES
|
2023年
/
17卷
/
01期
关键词:
Branching process with immigration;
random environment;
central limit theo-rem;
Berry-Esseen inequality;
LARGE DEVIATION RATES;
GALTON-WATSON PROCESS;
LIMIT-THEOREMS;
MOMENTS;
D O I:
10.7153/jmi-2023-17-22
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Let Wn be the fundamental submartingale of a supercritical branching process with immigration in a random environment. In order to characterize the convergence rates of Wn , the quenched and annealed non-uniform Berry-Esseen-type inequalities are established for Wn+k - Wn for each fxed k is an element of {1,2, center dot center dot center dot , infinity}, which reveal the convergence rates of the corresponding central limit theorems.
引用
收藏
页码:325 / 339
页数:15
相关论文