NON-UNIFORM BERRY-ESSEEN-TYPE INEQUALITIES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT

被引:0
作者
Wang, X. I. A. O. Q. I. A. N. G. [1 ]
Wu, J. I. U. J. I. A. N. G. [2 ]
Huang, C. H. U. N. M. A. O. [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
关键词
Branching process with immigration; random environment; central limit theo-rem; Berry-Esseen inequality; LARGE DEVIATION RATES; GALTON-WATSON PROCESS; LIMIT-THEOREMS; MOMENTS;
D O I
10.7153/jmi-2023-17-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Wn be the fundamental submartingale of a supercritical branching process with immigration in a random environment. In order to characterize the convergence rates of Wn , the quenched and annealed non-uniform Berry-Esseen-type inequalities are established for Wn+k - Wn for each fxed k is an element of {1,2, center dot center dot center dot , infinity}, which reveal the convergence rates of the corresponding central limit theorems.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 42 条
  • [31] A.s. convergence rate for a supercritical branching processes with immigration in a random environment
    Li, Yingqiu
    Huang, Xulan
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (03) : 826 - 839
  • [32] Uniform Cramér moderate deviations and Berry-Esseen bounds for superadditive bisexual branching processes in random environments
    Xiao, Sheng
    Liu, Xiangdong
    LITHUANIAN MATHEMATICAL JOURNAL, 2024, 64 (02) : 227 - 250
  • [33] Weighted moments for a supercritical branching process in a varying or random environment
    YingQiu Li
    YangLi Hu
    QuanSheng Liu
    Science China Mathematics, 2011, 54 : 1437 - 1444
  • [34] Weighted moments for a supercritical branching process in a varying or random environment
    Li YingQiu
    Hu YangLi
    Liu QuanSheng
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (07) : 1437 - 1444
  • [35] Quenched convergence rates for a supercritical branching process in a random environment
    Zhang, Xiaoyue
    Hong, Wenming
    STATISTICS & PROBABILITY LETTERS, 2022, 181
  • [36] Weighted moments for a supercritical branching process in a varying or random environment
    LI YingQiu1
    2College of Mathematics and Computer Sciences
    3LMAM
    Science China(Mathematics), 2011, 54 (07) : 1437 - 1444
  • [37] QUENCHED WEIGHTED MOMENTS OF A SUPERCRITICAL BRANCHING PROCESS IN A RANDOM ENVIRONMENT
    Wang, Yuejiao
    Li, Yingqiu
    Liu, Quansheng
    Liu, Zaiming
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (06) : 969 - 984
  • [38] ASYMPTOTIC DISTRIBUTIONS AND BERRY-ESSEEN INEQUALITIES FOR LOTKA-NAGAEV ESTIMATOR OF A POISSON RANDOMLY INDEXED BRANCHING PROCESS
    Gao, Zhenlong
    Zhang, Huili
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (03): : 735 - 746
  • [39] WEAKLY SUPERCRITICAL BRANCHING PROCESS IN A RANDOM ENVIRONMENT DYING AT A DISTANT MOMENT
    Afanasyev, V. I.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2024, 68 (04) : 537 - 558
  • [40] Large deviations for sums associated with supercritical branching process in a random environment
    Zhao, Yinxuan
    Zhang, Mei
    STATISTICS & PROBABILITY LETTERS, 2024, 207