NON-UNIFORM BERRY-ESSEEN-TYPE INEQUALITIES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT

被引:0
作者
Wang, X. I. A. O. Q. I. A. N. G. [1 ]
Wu, J. I. U. J. I. A. N. G. [2 ]
Huang, C. H. U. N. M. A. O. [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
关键词
Branching process with immigration; random environment; central limit theo-rem; Berry-Esseen inequality; LARGE DEVIATION RATES; GALTON-WATSON PROCESS; LIMIT-THEOREMS; MOMENTS;
D O I
10.7153/jmi-2023-17-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Wn be the fundamental submartingale of a supercritical branching process with immigration in a random environment. In order to characterize the convergence rates of Wn , the quenched and annealed non-uniform Berry-Esseen-type inequalities are established for Wn+k - Wn for each fxed k is an element of {1,2, center dot center dot center dot , infinity}, which reveal the convergence rates of the corresponding central limit theorems.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 42 条