NON-UNIFORM BERRY-ESSEEN-TYPE INEQUALITIES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT

被引:0
作者
Wang, X. I. A. O. Q. I. A. N. G. [1 ]
Wu, J. I. U. J. I. A. N. G. [2 ]
Huang, C. H. U. N. M. A. O. [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Harbin Inst Technol Weihai, Dept Math, Weihai 264209, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2023年 / 17卷 / 01期
关键词
Branching process with immigration; random environment; central limit theo-rem; Berry-Esseen inequality; LARGE DEVIATION RATES; GALTON-WATSON PROCESS; LIMIT-THEOREMS; MOMENTS;
D O I
10.7153/jmi-2023-17-22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Wn be the fundamental submartingale of a supercritical branching process with immigration in a random environment. In order to characterize the convergence rates of Wn , the quenched and annealed non-uniform Berry-Esseen-type inequalities are established for Wn+k - Wn for each fxed k is an element of {1,2, center dot center dot center dot , infinity}, which reveal the convergence rates of the corresponding central limit theorems.
引用
收藏
页码:325 / 339
页数:15
相关论文
共 42 条
  • [11] Central Limit Theorem and Convergence Rates for a Supercritical Branching Process with Immigration in a Random Environment
    Yingqiu Li
    Xulan Huang
    Zhaohui Peng
    Acta Mathematica Scientia, 2022, 42 : 957 - 974
  • [12] CENTRAL LIMIT THEOREM AND CONVERGENCE RATES FOR A SUPERCRITICAL BRANCHING PROCESS WITH IMMIGRATION IN A RANDOM ENVIRONMENT
    Li, Yingqiu
    Huang, Xulan
    Peng, Zhaohui
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (03) : 957 - 974
  • [13] Non-uniform Berry-Esseen Bounds for Coordinate Symmetric Random Vectors with Applications
    Le Van Thanh
    Nguyen Ngoc Tu
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (04) : 893 - 904
  • [14] Limit Theorems for a Supercritical Branching Process with Immigration at Zero in a Random Environment
    Zhao, Yinxuan
    Li, Doudou
    Zhang, Mei
    MARKOV PROCESSES AND RELATED FIELDS, 2023, 29 (05) : 661 - 681
  • [15] ON NON-UNIFORM BERRY-ESSEEN BOUNDS FOR TIME SERIES
    Jirak, Moritz
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2015, 35 (01): : 1 - 14
  • [16] Berry-Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk
    Bui, Thi thuy
    Grama, Ion
    Liu, Quansheng
    BERNOULLI, 2024, 30 (02) : 1401 - 1415
  • [17] Exact convergence rate in central limit theorem for a supercritical branching process with immigration in a random environment
    Li, Yingqiu
    Tang, Xinping
    Wang, Hesong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (23) : 8412 - 8427
  • [18] Refinement on the Constants in the Non-Uniform Version of the Berry-Esseen Theorem
    Thongtha, P.
    Neammanee, K.
    THAI JOURNAL OF MATHEMATICS, 2007, 5 (01): : 1 - 13
  • [19] Convergence in LP for a Supercritical Multi-type Branching Process in a Random Environment
    Grama, Ion
    Liu, Quansheng
    Pin, Erwan
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2022, 316 (01) : 160 - 183
  • [20] Non-uniform Berry-Esseen bounds for martingales with applications to statistical estimation
    Fan, Xiequan
    Grama, Ion
    Liu, Quansheng
    STATISTICS, 2017, 51 (01) : 105 - 122