BRIGHT SOLITONS IN THE SPACE-SHIFTED PT-SYMMETRIC NONLOCAL NONLINEAR SCHRODINGER EQUATION

被引:0
作者
Chen, Sheng-An [1 ]
Mihalache, Dumitru [2 ]
Jin, Kai [1 ]
Li, Junyan [1 ]
Rao, Jiguang [1 ]
机构
[1] Hubei Univ Sci & Technol, Sch Math & Stat, Xianning 437100, Hubei, Peoples R China
[2] Horia Hulubei Natl Inst Phys & Nucl Engn, POB MG-6, Magurele 077125, Romania
基金
中国国家自然科学基金;
关键词
PT-symmetric nonlocal nonlinear Schro?dinger equation; Bright solitons; KP-hierarchy reduction method; MATTER-WAVE MEDIA; MULTIDIMENSIONAL LOCALIZED STRUCTURES; TOPICAL SURVEY; ROGUE WAVES; DYNAMICS; HIERARCHY; SELECTION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Under investigations in this paper are the bright solitons on the zero and periodic wave background in the space-shifted PT-symmetric nonlocal nonlin-ear Schro center dot dinger equation. These soliton solutions are constructed through the bilinear KP-hierarchy reduction method, and are given in terms of determinants. The collision dynamics of bright two-soliton solutions on the zero background are studied based on their asymptotic expressions. The bright four-soliton solutions can form bound state two-soliton pairs. The bright two-soliton solutions on the periodic wave background are also studied. Compared with the case of solitons on the zero background, the bright two-soliton solutions on the periodic wave background have completely different dy-namics, even though the periodic waves vanish into the background.
引用
收藏
页数:16
相关论文
共 71 条
[1]  
Ablowitz M.J., 2003, Discrete and continuous nonlinear Schrodinger systems
[2]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E, DOI 10.1017/CBO9780511623998
[3]   Integrable space-time shifted nonlocal nonlinear equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICS LETTERS A, 2021, 409
[4]   Inverse scattering transform for the nonlocal nonlinear Schrodinger equation with nonzero boundary conditions [J].
Ablowitz, Mark J. ;
Luo, Xu-Dan ;
Musslimani, Ziad H. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (01)
[5]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[6]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[7]  
Akhmediev N.N., 1997, SOLITONS
[8]  
Aljahdaly NH, 2022, ROM REP PHYS, V74
[9]   Introduction to PT-symmetric quantum theory [J].
Bender, CM .
CONTEMPORARY PHYSICS, 2005, 46 (04) :277-292
[10]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246