Random Forest Algorithm-Based Prediction of Solvation Gibbs Energies

被引:8
作者
Liao, Meiping [1 ]
Wu, Feng [1 ]
Yu, Xinliang [1 ]
Zhao, Le [1 ]
Wu, Haojie [1 ]
Zhou, Jiannan [1 ]
机构
[1] Hunan Inst Engn, Coll Mat & Chem Engn, Hunan Prov Key Lab Environm Catalysis & Waste Rege, Xiangtan 411104, Hunan, Peoples R China
关键词
Machine learning; Molecular descriptor; QSPR; Random forest; Solvation Gibbs energy; MODEL;
D O I
10.1007/s10953-023-01247-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solvation Gibbs energy of chemicals is a critical parameter in chemical industry and chemical reactivity. Predicting the solvation Gibbs energies for a large number of solvents and solutes through machine learning techniques is challenging area. In this work, the random forest (RF) algorithm, together with a combined descriptor set from solvents and solutes, was used for developing a quantitative structure-property relationship (QSPR) model for solvation Gibbs energies of 6238 solute/solvent pairs. The optimal RF (ntree = 25, mtry = 10 and nodesize = 5) model was obtained, whose training and test sets, respectively, have determination coefficients of 0.935 and 0.924, and root mean square errors of 2.477 and 2.464 kJ center dot mol(- 1). In predicting the solvation Gibbs energies for a large dataset, the optimal RF model is comparable to other QSPR models reported in the literature. (GRAPHICS)
引用
收藏
页码:487 / 498
页数:12
相关论文
共 40 条
[1]   Improved prediction of solvation free energies by machine-learning polarizable continuum solvation model [J].
Alibakhshi, Amin ;
Hartke, Bernd .
NATURE COMMUNICATIONS, 2021, 12 (01)
[2]  
[Anonymous], 2010, IBM SPSS statistics for Windows
[3]   A Polarization-Consistent Model for Alcohols to Predict Solvation Free Energies [J].
Barrera, Maria Cecilia ;
Jorge, Miguel .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (03) :1352-1367
[4]   Hybrid QSPR models for the prediction of the free energy of solvation of organic solute/solvent pairs [J].
Borhani, Tohid N. ;
Garcia-Munoz, Salvador ;
Luciani, Carla Vanesa ;
Galindo, Amparo ;
Adjiman, Claire S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2019, 21 (25) :13706-13720
[5]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[6]   Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy [J].
Chung, Yunsie ;
Vermeire, Florence H. ;
Wu, Haoyang ;
Walker, Pierre J. ;
Abraham, Michael H. ;
Green, William H. .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (03) :433-446
[7]  
Hille C., 2018, SOLV TUM V 10
[8]   Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme [J].
Hille, Christoph ;
Ringe, Stefan ;
Deimel, Martin ;
Kunkel, Christian ;
Acree, William E. ;
Reuter, Karsten ;
Oberhofer, Harald .
JOURNAL OF CHEMICAL PHYSICS, 2019, 150 (04)
[9]   Solvent-Specific Featurization for Predicting Free Energies of Solvation through Machine Learning [J].
Hutchinson, Samuel T. ;
Kobayashi, Rika .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (04) :1338-1346
[10]   Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction [J].
Katritzky, Alan R. ;
Kuanar, Minati ;
Slavov, Svetoslav ;
Hall, C. Dennis ;
Karelson, Mati ;
Kahn, Iiris ;
Dobchev, Dimitar A. .
CHEMICAL REVIEWS, 2010, 110 (10) :5714-5789