Infrared and Visible Image Fusion via Hybrid Variational Model

被引:1
作者
Xia, Zhengwei [1 ]
Liu, Yun [2 ]
Wang, Xiaoyun [1 ]
Zhang, Feiyun [1 ]
Chen, Rui [3 ]
Jiang, Weiwei [4 ]
机构
[1] Xuchang Univ, Sch Elect & Mech Engn, Xuchang 461000, Peoples R China
[2] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[3] Zhengzhou Univ Light Ind, Coll Software Engn, Zhengzhou 450001, Peoples R China
[4] Beijing Univ Posts & Telecommun, Sch Informat & Commun Engn, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
infrared image; visible image; image fusion; variational model; NETWORK;
D O I
10.1587/transinf.2023EDL8027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Infrared and visible image fusion can combine the thermal radiation information and the textures to provide a high-quality fused image. In this letter, we propose a hybrid variational fusion model to achieve this end. Specifically, an l0 term is adopted to preserve the highlighted targets with salient gradient variation in the infrared image, an l1 term is used to suppress the noise in the fused image and an l2 term is employed to keep the textures of the visible image. Experimental results demonstrate the superiority of the proposed variational model and our results have more sharpen textures with less noise.
引用
收藏
页码:569 / 573
页数:5
相关论文
共 50 条
  • [41] An Infrared and Visible Image Fusion Algorithm Based on MAP
    Kang Kai
    Liu Tingting
    Wang Tianyun
    Nian Fuchun
    Xu Xianchun
    [J]. 17TH INTERNATIONAL CONFERENCE ON OPTICAL COMMUNICATIONS AND NETWORKS (ICOCN2018), 2019, 11048
  • [42] Infrared and visible image fusion methods and applications: A survey
    Ma, Jiayi
    Ma, Yong
    Li, Chang
    [J]. INFORMATION FUSION, 2019, 45 : 153 - 178
  • [43] Performance Comparison of Infrared and Visible Image Fusion Approaches
    Lee, Myung-Won
    Kwak, Keun-Chang
    [J]. 2017 INTERNATIONAL CONFERENCE ON CONTROL, ARTIFICIAL INTELLIGENCE, ROBOTICS & OPTIMIZATION (ICCAIRO), 2017, : 274 - 277
  • [44] Infrared and Visible Image Fusion Based on Semantic Segmentation
    Zhou H.
    Hou J.
    Wu W.
    Zhang Y.
    Wu Y.
    Ma J.
    [J]. Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2021, 58 (02): : 436 - 443
  • [45] Research progress of infrared and visible image fusion technology
    Shen Y.
    Huang C.
    Huang F.
    Li J.
    Zhu M.
    Wang S.
    [J]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50 (09):
  • [46] Semantic perceptive infrared and visible image fusion Transformer
    Yang, Xin
    Huo, Hongtao
    Li, Chang
    Liu, Xiaowen
    Wang, Wenxi
    Wang, Cheng
    [J]. PATTERN RECOGNITION, 2024, 149
  • [47] Visible and Infrared Image Fusion Based on Curvelet Transform
    Quan, Siji
    Qian, Weiping
    Guo, Junhai
    Zhao, Hua
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 828 - 832
  • [48] Feature dynamic alignment and refinement for infrared-visible image fusion: Translation robust fusion
    Li, Huafeng
    Zhao, Junzhi
    Li, Jinxing
    Yu, Zhengtao
    Lu, Guangming
    [J]. INFORMATION FUSION, 2023, 95 : 26 - 41
  • [49] L2FUSION: LOW-LIGHT ORIENTED INFRARED AND VISIBLE IMAGE FUSION
    Gao, Xiang
    Lv, Guohua
    Dong, Aimei
    Wei, Zhonghe
    Cheng, Jinyong
    [J]. 2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2405 - 2409
  • [50] DGLT-Fusion: A decoupled global-local infrared and visible image fusion transformer
    Yang, Xin
    Huo, Hongtao
    Wang, Renhua
    Li, Chang
    Liu, Xiaowen
    Li, Jing
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2023, 128