Genus and crosscap of solvable conjugacy class graphs of finite groups

被引:1
作者
Bhowal, Parthajit [1 ,2 ]
Cameron, Peter J. [3 ]
Nath, Rajat Kanti [1 ]
Sambale, Benjamin [4 ]
机构
[1] Tezpur Univ, Dept Math Sci, Sonitpur 784028, Assam, India
[2] Cachar Coll, Dept Math, Silchar 788001, Assam, India
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
[4] Leibniz Univ Hannover, Inst Algebra Zahlentheorie & Diskrete Math, D-30167 Hannover, Germany
关键词
Graph; Conjugacy class; Non-solvable group; Genus; Commuting probability; PROBABILITY;
D O I
10.1007/s00013-024-01974-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The solvable conjugacy class graph of a finite group G, denoted by Gamma sc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{sc}(G)$$\end{document}, is a simple undirected graph whose vertices are the non-trivial conjugacy classes of G and two distinct conjugacy classes C, D are adjacent if there exist x is an element of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x \in C$$\end{document} and y is an element of D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y \in D$$\end{document} such that ⟨x,y⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\langle x, y\rangle $$\end{document} is solvable. In this paper, we discuss certain properties of the genus and crosscap of Gamma sc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{sc}(G)$$\end{document} for the groups D2n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{2n}$$\end{document}, Q4n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_{4n}$$\end{document}, Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}, An\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_n$$\end{document}, and PSL(2,2d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\mathrm{\mathop {\textrm{PSL}}}\,}}(2,2<^>d)$$\end{document}. In particular, we determine all positive integers n such that their solvable conjugacy class graphs are planar, toroidal, double-toroidal, or triple-toroidal. We shall also obtain a lower bound for the genus of Gamma sc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{sc}(G)$$\end{document} in terms of the order of the center and number of conjugacy classes for certain groups. As a consequence, we shall derive a relation between the genus of Gamma sc(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma _{sc}(G)$$\end{document} and the commuting probability of certain finite non-solvable group.
引用
收藏
页码:475 / 489
页数:15
相关论文
共 15 条
  • [1] PLANAR, TOROIDAL, AND PROJECTIVE COMMUTING AND NONCOMMUTING GRAPHS
    Afkhami, M.
    Farrokhi, M. D. G.
    Khashyarmanesh, K.
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (07) : 2964 - 2970
  • [2] Super Graphs on Groups, I
    Arunkumar, G.
    Cameron, Peter J.
    Nath, Rajat Kanti
    Selvaganesh, Lavanya
    [J]. GRAPHS AND COMBINATORICS, 2022, 38 (03)
  • [3] Bhowal P., 2022, Alg. Struc. Appl., V9, P93
  • [4] Solvable conjugacy class graph of groups
    Bhowal, Parthajit
    Cameron, Peter J.
    Nath, Rajat Kanti
    Sambale, Benjamin
    [J]. DISCRETE MATHEMATICS, 2023, 346 (08)
  • [5] Non-Solvable Graphs of Groups
    Bhowal, Parthajit
    Nongsiang, Deiborlang
    Nath, Rajat Kanti
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (03) : 1255 - 1272
  • [6] Solvable graphs of finite groups
    Bhowal, Parthajit
    Nongsiang, Deiborlang
    Nath, Rajat Kanti
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 1955 - 1964
  • [7] Conway J.H., 1985, of Finite Groups
  • [8] Das AK, 2016, INT ELECTRON J ALGEB, V19, P91
  • [9] ON THE GENUS OF THE NILPOTENT GRAPHS OF FINITE GROUPS
    Das, Ashish Kumar
    Nongsiang, Deiborlang
    [J]. COMMUNICATIONS IN ALGEBRA, 2015, 43 (12) : 5282 - 5290
  • [10] 103 GRAPHS THAT ARE IRREDUCIBLE FOR THE PROJECTIVE PLANE
    GLOVER, HH
    HUNEKE, JP
    WANG, CS
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1979, 27 (03) : 332 - 370