Prediction of extranodal extension in head and neck squamous cell carcinoma by CT images using an evolutionary learning model

被引:3
作者
Huang, Tzu-Ting [1 ,2 ,3 ]
Lin, Yi-Chen [4 ]
Yen, Chia-Heng [3 ]
Lan, Jui [5 ]
Yu, Chiun-Chieh [6 ]
Lin, Wei-Che [6 ]
Chen, Yueh-Shng [6 ]
Wang, Cheng-Kang [6 ]
Huang, Eng-Yen [1 ,2 ,7 ]
Ho, Shinn-Ying [4 ,8 ,9 ,10 ]
机构
[1] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Dept Radiat Oncol, Coll Med, 129 Dapi Rd, Kaohsiung, Taiwan
[2] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Proton Radiat Therapy Ctr, Coll Med, 129 Dapi Rd, Kaohsiung, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Inst Comp Sci & Engn, 1001 Univ Rd, Hsinchu, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, 75 Po Ai St, Hsinchu, Taiwan
[5] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Dept Anat Pathol, Coll Med, 123 Dapi Rd, Kaohsiung, Taiwan
[6] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Dept Diagnost Radiol, Coll Med, 123 Dapi Rd, Kaohsiung, Taiwan
[7] Natl Sun Yat Sen Univ, Sch Med, Coll Med, 70 Lienhai Rd, Kaohsiung 80424, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Dept Biol Sci & Technol, 1001 Univ Rd, Hsinchu, Taiwan
[9] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS, 75 Po Ai St, Hsinchu, Taiwan
[10] Kaohsiung Med Univ, Coll Hlth Sci, 100 Shih Chuan 1st Rd, Kaohsiung, Taiwan
关键词
Head and neck squamous cell carcinoma; Extranodal extension; Radiomics; Evolutionary learning; Artificial; DEXAMETHASONE-SUPPRESSION TEST; TRANSORAL ROBOTIC SURGERY; BRAIN GLUCOSE-METABOLISM; CUSHINGS-DISEASE; TRANSSPHENOIDAL SURGERY; PROGNOSTIC-SIGNIFICANCE; EXTRACAPSULAR SPREAD; COMPUTED-TOMOGRAPHY; DIFFERENTIAL-DIAGNOSIS; PITUITARY-ADENOMA;
D O I
10.1186/s40644-023-00601-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Extranodal extension (ENE) in head and neck squamous cell carcinoma (HNSCC) correlates to poor prognoses and influences treatment strategies. Deep learning may yield promising performance of predicting ENE in HNSCC but lack of transparency and interpretability. This work proposes an evolutionary learning method, called EL -ENE, to establish a more interpretable ENE prediction model for aiding clinical diagnosis. Methods There were 364 HNSCC patients who underwent neck lymph node (LN) dissection with pre-operative contrast-enhanced computerized tomography images. All the 778 LNs were divided into training and test sets with the ratio 8:2. EL -ENE uses an inheritable bi-objective combinatorial genetic algorithm for optimal feature selection and parameter setting of support vector machine. The diagnostic performances of the ENE prediction model and radiologists were compared using independent test datasets. Results The EL -ENE model achieved the test accuracy of 80.00%, sensitivity of 81.13%, and specificity of 79.44% for ENE detection. The three radiologists achieved the mean diagnostic accuracy of 70.4%, sensitivity of 75.6%, and specificity of 67.9%. The features of gray-level texture and 3D morphology of LNs played essential roles in predicting ENE. Conclusions The EL -ENE method provided an accurate, comprehensible, and robust model to predict ENE in HNSCC with interpretable radiomic features for expanding clinical knowledge. The proposed transparent prediction models are more trustworthy and may increase their acceptance in daily clinical practice.
引用
收藏
页数:11
相关论文
共 95 条
  • [41] Multi-Institutional Validation of Deep Learning for Pretreatment Identification of Extranodal Extension in Head and Neck Squamous Cell Carcinoma
    Kann, Benjamin H.
    Hicks, Daniel F.
    Payabvash, Sam
    Mahajan, Amit
    Du, Justin
    Gupta, Vishal
    Park, Henry S.
    Yu, James B.
    Yarbrough, Wendell G.
    Burtness, Barbara A.
    Husain, Zain A.
    Aneja, Sanjay
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (12) : 1304 - +
  • [42] Pretreatment Identification of Head and Neck Cancer Nodal Metastasis and Extranodal Extension Using Deep Learning Neural Networks
    Kann, Benjamin H.
    Aneja, Sanjay
    Loganadane, Gokoulakrichenane V.
    Kelly, Jacqueline R.
    Smith, Stephen M.
    Decker, Roy H.
    Yu, James B.
    Park, Henry S.
    Yarbrough, Wendell G.
    Malhotra, Ajay
    Burtness, Barbara A.
    Husain, Zain A.
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [43] Volume interpolated 3D-spoiled gradient echo sequence is better than dynamic contrast spin echo sequence for MRI detection of corticotropin secreting pituitary microadenomas
    Kasaliwal, Rajeev
    Sankhe, Shilpa S.
    Lila, Anurag R.
    Budyal, Sweta R.
    Jagtap, Varsha S.
    Sarathi, Vijaya
    Kakade, Harshal
    Bandgar, Tushar
    Menon, Padmavathy S.
    Shah, Nalini S.
    [J]. CLINICAL ENDOCRINOLOGY, 2013, 78 (06) : 825 - 830
  • [44] Incidental detection of clinically occult pituitary adenoma on whole-body FDG PET imaging
    Koo, CW
    Bhargava, P
    Rajagopalan, V
    Ghesani, M
    Sims-Childs, H
    Kagetsu, NJ
    [J]. CLINICAL NUCLEAR MEDICINE, 2006, 31 (01) : 42 - 43
  • [45] CT Texture Analysis of Cervical Lymph Nodes on Contrast-Enhanced [18F] FDG-PET/CT Images to Differentiate Nodal Metastases from Reactive Lymphadenopathy in HIV-Positive Patients with Head and Neck Squamous Cell Carcinoma
    Kuno, H.
    Garg, N.
    Qureshi, M. M.
    Chapman, M. N.
    Li, B.
    Meibom, S. K.
    Truong, M. T.
    Takumi, K.
    Sakai, O.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (03) : 543 - 550
  • [46] Cushing's syndrome
    Lacroix, Andre
    Feelders, Richard A.
    Stratakis, Constantine A.
    Nieman, Lynnette K.
    [J]. LANCET, 2015, 386 (9996) : 913 - 927
  • [47] Glucocorticoid receptors and Cushing's disease
    Lamberts, SWJ
    [J]. MOLECULAR AND CELLULAR ENDOCRINOLOGY, 2002, 197 (1-2) : 69 - 72
  • [48] Larasati RaDL Anna, 2019, INTERACT 2019 17 IFI
  • [49] Evolutionary Learning-Derived Clinical-Radiomic Models for Predicting Early Recurrence of Hepatocellular Carcinoma after Resection
    Lee, I-Cheng
    Huang, Jo-Yu
    Chen, Ting-Chun
    Yen, Chia-Heng
    Chiu, Nai-Chi
    Hwang, Hsuen-En
    Huang, Jia-Guan
    Liu, Chien-An
    Chau, Gar-Yang
    Lee, Rheun-Chuan
    Hung, Yi-Ping
    Chao, Yee
    Ho, Shinn-Ying
    Huang, Yi-Hsiang
    [J]. LIVER CANCER, 2021, 10 (06) : 572 - 582
  • [50] Predicting prognosis of nasopharyngeal carcinoma based on deep learning: peritumoral region should be valued
    Li, Song
    Wan, Xia
    Deng, Yu-Qin
    Hua, Hong-Li
    Li, Sheng-Lan
    Chen, Xi-Xiang
    Zeng, Man-Li
    Zha, Yunfei
    Tao, Ze-Zhang
    [J]. CANCER IMAGING, 2023, 23 (01)