Prediction of extranodal extension in head and neck squamous cell carcinoma by CT images using an evolutionary learning model

被引:3
作者
Huang, Tzu-Ting [1 ,2 ,3 ]
Lin, Yi-Chen [4 ]
Yen, Chia-Heng [3 ]
Lan, Jui [5 ]
Yu, Chiun-Chieh [6 ]
Lin, Wei-Che [6 ]
Chen, Yueh-Shng [6 ]
Wang, Cheng-Kang [6 ]
Huang, Eng-Yen [1 ,2 ,7 ]
Ho, Shinn-Ying [4 ,8 ,9 ,10 ]
机构
[1] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Dept Radiat Oncol, Coll Med, 129 Dapi Rd, Kaohsiung, Taiwan
[2] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Proton Radiat Therapy Ctr, Coll Med, 129 Dapi Rd, Kaohsiung, Taiwan
[3] Natl Yang Ming Chiao Tung Univ, Inst Comp Sci & Engn, 1001 Univ Rd, Hsinchu, Taiwan
[4] Natl Yang Ming Chiao Tung Univ, Inst Bioinformat & Syst Biol, 75 Po Ai St, Hsinchu, Taiwan
[5] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Dept Anat Pathol, Coll Med, 123 Dapi Rd, Kaohsiung, Taiwan
[6] Chang Gung Univ, Kaohsiung Chang Gung Mem Hosp, Dept Diagnost Radiol, Coll Med, 123 Dapi Rd, Kaohsiung, Taiwan
[7] Natl Sun Yat Sen Univ, Sch Med, Coll Med, 70 Lienhai Rd, Kaohsiung 80424, Taiwan
[8] Natl Yang Ming Chiao Tung Univ, Dept Biol Sci & Technol, 1001 Univ Rd, Hsinchu, Taiwan
[9] Natl Yang Ming Chiao Tung Univ, Ctr Intelligent Drug Syst & Smart Biodevices IDS, 75 Po Ai St, Hsinchu, Taiwan
[10] Kaohsiung Med Univ, Coll Hlth Sci, 100 Shih Chuan 1st Rd, Kaohsiung, Taiwan
关键词
Head and neck squamous cell carcinoma; Extranodal extension; Radiomics; Evolutionary learning; Artificial; DEXAMETHASONE-SUPPRESSION TEST; TRANSORAL ROBOTIC SURGERY; BRAIN GLUCOSE-METABOLISM; CUSHINGS-DISEASE; TRANSSPHENOIDAL SURGERY; PROGNOSTIC-SIGNIFICANCE; EXTRACAPSULAR SPREAD; COMPUTED-TOMOGRAPHY; DIFFERENTIAL-DIAGNOSIS; PITUITARY-ADENOMA;
D O I
10.1186/s40644-023-00601-7
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Extranodal extension (ENE) in head and neck squamous cell carcinoma (HNSCC) correlates to poor prognoses and influences treatment strategies. Deep learning may yield promising performance of predicting ENE in HNSCC but lack of transparency and interpretability. This work proposes an evolutionary learning method, called EL -ENE, to establish a more interpretable ENE prediction model for aiding clinical diagnosis. Methods There were 364 HNSCC patients who underwent neck lymph node (LN) dissection with pre-operative contrast-enhanced computerized tomography images. All the 778 LNs were divided into training and test sets with the ratio 8:2. EL -ENE uses an inheritable bi-objective combinatorial genetic algorithm for optimal feature selection and parameter setting of support vector machine. The diagnostic performances of the ENE prediction model and radiologists were compared using independent test datasets. Results The EL -ENE model achieved the test accuracy of 80.00%, sensitivity of 81.13%, and specificity of 79.44% for ENE detection. The three radiologists achieved the mean diagnostic accuracy of 70.4%, sensitivity of 75.6%, and specificity of 67.9%. The features of gray-level texture and 3D morphology of LNs played essential roles in predicting ENE. Conclusions The EL -ENE method provided an accurate, comprehensible, and robust model to predict ENE in HNSCC with interpretable radiomic features for expanding clinical knowledge. The proposed transparent prediction models are more trustworthy and may increase their acceptance in daily clinical practice.
引用
收藏
页数:11
相关论文
共 95 条
  • [1] Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis
    Aggarwal, Ravi
    Sounderajah, Viknesh
    Martin, Guy
    Ting, Daniel S. W.
    Karthikesalingam, Alan
    King, Dominic
    Ashrafian, Hutan
    Darzi, Ara
    [J]. NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [2] The diagnostic value of fused positron emission tomography/computed tomography in the localization of adrenocorticotropin-secreting pituitary adenoma in Cushing's disease
    Alzahrani, Ali S.
    Farhat, Rafif
    Al-Arifi, Abdullah
    Al-Kahtani, Nora
    Kanaan, Imad
    Abouzied, Mohei
    [J]. PITUITARY, 2009, 12 (04) : 309 - 314
  • [3] Johnson Daniel E, 2020, Nat Rev Dis Primers, V6, P92, DOI [10.1038/s41572-020-00233-2, 10.1038/s41572-020-00224-3]
  • [4] [Anonymous], 2012, SPATIAL RESOLUTION C, V12, P107, DOI [10.1093/jicru/ndt001, DOI 10.1093/JICRU/NDT001]
  • [5] CT evaluation of extranodal extension of cervical lymph node metastases in patients with oral squamous cell carcinoma using deep learning classification
    Ariji, Yoshiko
    Sugita, Yoshihiko
    Nagao, Toru
    Nakayama, Atsushi
    Fukuda, Motoki
    Kise, Yoshitaka
    Nozawa, Michihito
    Nishiyama, Masako
    Katumata, Akitoshi
    Ariji, Eiichiro
    [J]. ORAL RADIOLOGY, 2020, 36 (02) : 148 - 155
  • [6] Identifying reasoning strategies in medical decision making: A methodological guide
    Arocha, JF
    Wang, DW
    Patel, VL
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2005, 38 (02) : 154 - 171
  • [7] ASSESSMENT OF THE UTILITY OF THE HIGH-DOSE DEXAMETHASONE SUPPRESSION TEST IN CONFIRMING THE DIAGNOSIS OF CUSHING DISEASE
    Aytug, Serhat
    Laws, Edward R., Jr.
    Vance, Mary Lee
    [J]. ENDOCRINE PRACTICE, 2012, 18 (02) : 152 - 157
  • [8] BOCHICCHIO D, 1995, J CLIN ENDOCR METAB, V80, P3114, DOI 10.1210/jc.80.11.3114
  • [9] CRH stimulation improves 18F-FDG-PET detection of pituitary adenomas in Cushing's disease
    Boyle, Jacqueline
    Patronas, Nicholas J.
    Smirniotopoulos, James
    Herscovitch, Peter
    Dieckman, William
    Millo, Corina
    Maric, Dragan
    Chatain, Gregoire P.
    Hayes, Christina Piper
    Benzo, Sarah
    Scott, Gretchen
    Edwards, Nancy
    Chaudhury, Abhik Ray
    Lodish, Maya B.
    Sharma, Susmeeta
    Nieman, Lynnette K.
    Stratakis, Constantine A.
    Lonser, Russell R.
    Chittiboina, Prashant
    [J]. ENDOCRINE, 2019, 65 (01) : 155 - 165
  • [10] Pituitary adenoma detected on FDG positron emission tomography in a patient with mucosa-associated lymphoid tissue lymphoma
    Campeau, RJ
    David, O
    Dowling, AM
    [J]. CLINICAL NUCLEAR MEDICINE, 2003, 28 (04) : 296 - 298