High-Performance Complementary Circuits from Two-Dimensional MoTe2

被引:15
作者
Cai, Jun [1 ,2 ]
Sun, Zheng [1 ,2 ]
Wu, Peng [3 ,4 ]
Tripathi, Rahul [1 ,2 ]
Lan, Hao-Yu [1 ,2 ]
Kong, Jing [3 ,4 ]
Chen, Zhihong [1 ,2 ]
Appenzeller, Joerg [1 ,2 ]
机构
[1] Purdue Univ, Elmore Family Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
[2] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47907 USA
[3] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[4] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
关键词
CMOS; two-dimensional materials; MoTe2; high-performance; Schottky barrier; nitric oxide doping; inverter; BAND-GAP; TRANSISTORS; WSE2; RESISTANCE; MECHANISM; CHANNEL;
D O I
10.1021/acs.nanolett.3c03184
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Two-dimensional (2D) materials hold great promise for future complementary metal-oxide semiconductor (CMOS) technology. However, the lack of effective methods to tune the Schottky barrier poses a challenge in constructing high-performance complementary circuits from the same material. Here, we reveal that the polarity of pristine MoTe2 field-effect transistors (FETs) with minimized air exposure is n-type, irrespective of the metal contact type. The fabricated n-FETs with palladium contact can reach electron currents up to 275 mu A/mu m at V-DS = 2 V. For p-FETs, we introduce a novel nitric oxide doping strategy, allowing a controlled transition of MoTe2 FETs from n-type to unipolar p-type. By doping only in the contact region, we demonstrate hole currents up to 170 mu A/mu m at V-DS= -2 V with preserved I-on/I-off ratios of 105. Finally, we present a complementary inverter circuit comprising the high-performance n- and p-type FETs based on MoTe2, promoting the application of 2D materials in future electronic systems.
引用
收藏
页码:10939 / 10945
页数:7
相关论文
共 43 条
[1]  
Auth C., 2012, 2012 IEEE Symposium on VLSI Technology, P131, DOI 10.1109/VLSIT.2012.6242496
[2]  
Briggs B., 2017, 2017 IEEE INT EL DEV, p14.2.1
[3]   Air-Stable P-Doping in Record High-Performance Monolayer WSe2 Devices [J].
Chiang, Chin-Cheng ;
Lan, Hao-Yu ;
Pang, Chin-Sheng ;
Appenzeller, Joerg ;
Chen, Zhihong .
IEEE ELECTRON DEVICE LETTERS, 2022, 43 (02) :319-322
[4]   Transistors based on two-dimensional materials for future integrated circuits [J].
Das, Saptarshi ;
Sebastian, Amritanand ;
Pop, Eric ;
McClellan, Connor J. ;
Franklin, Aaron D. ;
Grasser, Tibor ;
Knobloch, Theresia ;
Illarionov, Yury ;
Penumatcha, Ashish V. ;
Appenzeller, Joerg ;
Chen, Zhihong ;
Zhu, Wenjuan ;
Asselberghs, Inge ;
Li, Lain-Jong ;
Avci, Uygar E. ;
Bhat, Navakanta ;
Anthopoulos, Thomas D. ;
Singh, Rajendra .
NATURE ELECTRONICS, 2021, 4 (11) :786-799
[5]   High Performance Multilayer MoS2 Transistors with Scandium Contacts [J].
Das, Saptarshi ;
Chen, Hong-Yan ;
Penumatcha, Ashish Verma ;
Appenzeller, Joerg .
NANO LETTERS, 2013, 13 (01) :100-105
[6]  
Fang H, 2012, NANO LETT, V12, P3788, DOI [10.1021/nl3040674, 10.1021/nl301702r]
[7]   Exfoliated multilayer MoTe2 field-effect transistors [J].
Fathipour, S. ;
Ma, N. ;
Hwang, W. S. ;
Protasenko, V. ;
Vishwanath, S. ;
Xing, H. G. ;
Xu, H. ;
Jena, D. ;
Appenzeller, J. ;
Seabaugh, A. .
APPLIED PHYSICS LETTERS, 2014, 105 (19)
[8]   Chalcogen vacancies in monolayer transition metal dichalcogenides and Fermi level pinning at contacts [J].
Guo, Y. ;
Liu, D. ;
Robertson, J. .
APPLIED PHYSICS LETTERS, 2015, 106 (17)
[9]   Ballistic two-dimensional InSe transistors [J].
Jiang, Jianfeng ;
Xu, Lin ;
Qiu, Chenguang ;
Peng, Lian-Mao .
NATURE, 2023, 616 (7957) :470-+
[10]   Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides [J].
Kang, Mingu ;
Kim, Beomyoung ;
Ryu, Sae Hee ;
Jung, Sung Won ;
Kim, Jimin ;
Moreschini, Luca ;
Jozwiak, Chris ;
Rotenberg, Eli ;
Bostwick, Aaron ;
Kim, Keun Su .
NANO LETTERS, 2017, 17 (03) :1610-1615