Interplays between cyanobacterial blooms and antibiotic resistance genes

被引:11
作者
Kim, Min -Ji [1 ]
Kang, Dayun [2 ]
Lee, Gyudae [1 ]
Kim, Kyeongnam [3 ]
Kim, Jinnam [2 ]
Shin, Jae-Ho [1 ,4 ,5 ]
Lee, Seungjun [2 ,5 ]
机构
[1] Kyungpook Natl Univ, Dept Appl Biosci, Daegu 41566, South Korea
[2] Pukyong Natl Univ, Dept Food Sci & Nutr, Pusan 48513, South Korea
[3] Kyungpook Natl Univ, Inst Qual & Safety Evaluat Agr Prod, Daegu 41566, South Korea
[4] Kyungpook Natl Univ, NGS Core Facil, Daegu 41566, South Korea
[5] Kyungpook Natl Univ, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Antibiotic resistance; Antibiotic resistance gene; Cyanobacterial blooms; Resistome; Metagenome; One-Health; WATER TREATMENT; HUMAN HEALTH; DISSEMINATION; BACTERIA; RIVER; PCR; MICROCYSTIS; RESISTOME; IMPACTS;
D O I
10.1016/j.envint.2023.108268
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs.
引用
收藏
页数:11
相关论文
共 83 条
[1]   CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database [J].
Alcock, Brian P. ;
Raphenya, Amogelang R. ;
Lau, Tammy T. Y. ;
Tsang, Kara K. ;
Bouchard, Megane ;
Edalatmand, Arman ;
Huynh, William ;
Nguyen, Anna-Lisa, V ;
Cheng, Annie A. ;
Liu, Sihan ;
Min, Sally Y. ;
Miroshnichenko, Anatoly ;
Tran, Hiu-Ki ;
Werfalli, Rafik E. ;
Nasir, Jalees A. ;
Oloni, Martins ;
Speicher, David J. ;
Florescu, Alexandra ;
Singh, Bhavya ;
Faltyn, Mateusz ;
Hernandez-Koutoucheva, Anastasia ;
Sharma, Arjun N. ;
Bordeleau, Emily ;
Pawlowski, Andrew C. ;
Zubyk, Haley L. ;
Dooley, Damion ;
Griffiths, Emma ;
Maguire, Finlay ;
Winsor, Geoff L. ;
Beiko, Robert G. ;
Brinkman, Fiona S. L. ;
Hsiao, William W. L. ;
Domselaar, Gary, V ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (D1) :D517-D525
[2]  
Alneberg J, 2014, NAT METHODS, V11, P1144, DOI [10.1038/NMETH.3103, 10.1038/nmeth.3103]
[3]  
[Anonymous], US ENV PROTECTION AG
[4]   Tackling antibiotic resistance: the environmental framework [J].
Berendonk, Thomas U. ;
Manaia, Celia M. ;
Merlin, Christophe ;
Fatta-Kassinos, Despo ;
Cytryn, Eddie ;
Walsh, Fiona ;
Buergmann, Helmut ;
Sorum, Henning ;
Norstrom, Madelaine ;
Pons, Marie-Noelle ;
Kreuzinger, Norbert ;
Huovinen, Pentti ;
Stefani, Stefania ;
Schwartz, Thomas ;
Kisand, Veljo ;
Baquero, Fernando ;
Luis Martinez, Jose .
NATURE REVIEWS MICROBIOLOGY, 2015, 13 (05) :310-317
[5]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[6]   mobileOG-db: a Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements [J].
Brown, Connor L. ;
Mullet, James ;
Hindi, Fadi ;
Stoll, James E. ;
Gupta, Suraj ;
Choi, Minyoung ;
Keenum, Ishi ;
Vikesland, Peter ;
Pruden, Amy ;
Zhang, Liqing .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2022, 88 (18)
[7]   Sensitive protein alignments at tree-of-life scale using DIAMOND [J].
Buchfink, Benjamin ;
Reuter, Klaus ;
Drost, Hajk-Georg .
NATURE METHODS, 2021, 18 (04) :366-+
[8]   Climate Change Impacts on Harmful Algal Blooms in US Freshwaters: A Screening-Level Assessment [J].
Chapra, Steven C. ;
Boehlert, Brent ;
Fant, Charles ;
Bierman, Victor J., Jr. ;
Henderson, Jim ;
Mills, David ;
Mas, Diane M. L. ;
Rennels, Lisa ;
Jantarasami, Lesley ;
Martinich, Jeremy ;
Strzepek, Kenneth M. ;
Paerl, Hans W. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (16) :8933-8943
[9]   GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database [J].
Chaumeil, Pierre-Alain ;
Mussig, Aaron J. ;
Hugenholtz, Philip ;
Parks, Donovan H. .
BIOINFORMATICS, 2020, 36 (06) :1925-1927
[10]   Spatio-temporal connectivity of the aquatic microbiome associated with cyanobacterial blooms along a Great Lake riverine-lacustrine continuum [J].
Crevecoeur, Sophie ;
Edge, Thomas A. ;
Watson, Linet Cynthia ;
Watson, Susan B. ;
Greer, Charles W. ;
Ciborowski, Jan J. H. ;
Diep, Ngan ;
Dove, Alice ;
Drouillard, Kenneth G. ;
Frenken, Thijs ;
McKay, Robert Michael ;
Zastepa, Arthur ;
Comte, Jerome .
FRONTIERS IN MICROBIOLOGY, 2023, 14