Thermal management for the 18650 lithium-ion battery pack by immersion cooling with fluorinated liquid

被引:16
作者
Li, Yang [1 ]
Bai, Minli [1 ]
Zhou, Zhifu [2 ]
Wu, Wei-Tao [3 ]
Hu, Chengzhi [1 ]
Gao, Linsong [1 ]
Liu, Xinyu [1 ]
Li, Yubai [1 ]
Song, Yongchen [1 ]
机构
[1] Dalian Univ Technol, Key Lab Ocean Energy Utilizat & Energy Conservat, Minist Educ, Dalian 116023, Peoples R China
[2] Xi An Jiao Tong Univ, State Key Lab Multiphase Flow Power Engn, Xian 710049, Peoples R China
[3] Nanjing Univ Sci & Technol, Sch Mech Engn, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion battery; Liquid immersion cooling; Fast charging; Fluorinated liquid; Phase change; PHASE-CHANGE MATERIAL; HEAT-GENERATION; PERFORMANCE; SYSTEM; PCM;
D O I
10.1016/j.est.2023.109166
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
In this work, a new battery thermal management system (BTMS) utilizing a SF33-based liquid immersion cooling (LIC) scheme has been proposed. Firstly, the comparative investigation focuses on the temperature response of the LIC and forced air cooling (FAC) modules in different scenarios. The results demonstrate that LIC module effectively mitigates heat accumulation, thereby presenting notable advantages in terms of temperature control and equalization, even though the LIC module works under the stage without phase change occurrence. During 2C and 3C charging, the highest temperatures of the LIC module are observed to be 10 degrees C and 19.1 degrees C only lower than those of the FAC module, respectively. Furthermore, the highest temperature differences of the LIC module are only 12.89 % and 8.57 % of the corresponding values exhibited by the FAC module. Moreover, the associated cooling energy consumption for the LIC module is greatly reduced, amounting to only 16.47 % and 43.76 % of that required by the FAC module. Subsequently, an active control scheme for the LIC is initially proposed, and the phase change process of the LIC under various discharging rates is recorded and analyzed using a high-speed camera. This study serves as a preliminary proof of concept for the feasibility of SF33-based LIC scheme in BTMS.
引用
收藏
页数:14
相关论文
共 45 条
[1]   Heat and mass transfer modeling and assessment of a new battery cooling system [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 126 :765-778
[2]   Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
JOURNAL OF POWER SOURCES, 2017, 363 :291-303
[3]   Electrochemical modeling and performance evaluation of a new ammonia-based battery thermal management system for electric and hybrid electric vehicles [J].
Al-Zareer, Maan ;
Dincer, Ibrahim ;
Rosen, Marc A. .
ELECTROCHIMICA ACTA, 2017, 247 :171-182
[4]   Experimental investigation of the effects of using nano/phase change materials (NPCM) as coolant of electronic chipsets, under free and forced convection [J].
Alimohammadi, Mandieh ;
Aghli, Yasaman ;
Alavi, Elaheh Sadat ;
Sardarabadi, Mohammad ;
Passandideh-Fard, Mohammad .
APPLIED THERMAL ENGINEERING, 2017, 111 :271-279
[5]   Dynamics of Lithium Dendrite Growth and Inhibition: Pulse Charging Experiments and Monte Carlo Calculations [J].
Aryanfar, Asghar ;
Brooks, Daniel ;
Merinov, Boris V. ;
Goddard, William A., III ;
Colussi, Agustin J. ;
Hoffmann, Michael R. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (10) :1721-1726
[6]   A GENERAL ENERGY-BALANCE FOR BATTERY SYSTEMS [J].
BERNARDI, D ;
PAWLIKOWSKI, E ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1985, 132 (01) :5-12
[7]   Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: A review [J].
Chen, Jingwei ;
Kang, Siyi ;
Jiaqiang, E. ;
Huang, Zhonghua ;
Wei, Kexiang ;
Zhang, Bin ;
Zhu, Hao ;
Deng, Yuanwang ;
Zhang, Feng ;
Liao, Gaoliang .
JOURNAL OF POWER SOURCES, 2019, 442
[8]   Cycle life analysis of series connected lithium-ion batteries with temperature difference [J].
Chiu, Kuan-Cheng ;
Lin, Chi-Hao ;
Yeh, Sheng-Fa ;
Lin, Yu-Han ;
Huang, Chih-Sheng ;
Chen, Kuo-Ching .
JOURNAL OF POWER SOURCES, 2014, 263 :75-84
[9]   Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery [J].
Forgez, Christophe ;
Do, Dinh Vinh ;
Friedrich, Guy ;
Morcrette, Mathieu ;
Delacourt, Charles .
JOURNAL OF POWER SOURCES, 2010, 195 (09) :2961-2968
[10]   Experimental performances of a battery thermal management system using a phase change material [J].
Hemery, Charles-Victor ;
Pra, Franck ;
Robin, Jean-Francois ;
Marty, Philippe .
JOURNAL OF POWER SOURCES, 2014, 270 :349-358