Deep Reinforcement Learning Based Trajectory Design and Resource Allocation for UAV-Assisted Communications

被引:5
|
作者
Zhang, Chiya [1 ]
Li, Zhukun [1 ]
He, Chunlong [2 ]
Wang, Kezhi [3 ]
Pan, Cunhua [4 ]
机构
[1] Harbin Inst Technol, Sch Elect & Informat Engn, Shenzhen 518055, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Intelligent Informat Proc, Shenzhen 518060, Peoples R China
[3] Brunel Univ London, Dept Comp Sci, London UB8 3PH, England
[4] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 211189, Peoples R China
基金
中国国家自然科学基金;
关键词
Unmanned aerial vehicles; deep reinforcement learning; 3-D trajectory design; uncertain flight time;
D O I
10.1109/LCOMM.2023.3292816
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this letter, we investigate the Unmanned Aerial Vehicles (UAVs)-assisted communications in three dimensional (3-D) environment, where one UAV is deployed to serve multiple user equipments (UEs). The locations and quality of service (QoS) requirement of the UEs are varying and the flying time of the UAV is unknown which depends on the battery of the UAVs. To address the issue, a proximal policy optimization 2 (PPO2)-based deep reinforcement learning (DRL) algorithm is proposed, which can control the UAV in an online manner. Specifically, it can allow the UAV to adjust its speed, direction and altitude so as to minimize the serving time of the UAV while satisfying the QoS requirement of the UEs. Simulation results are provided to demonstrate the effectiveness of the proposed framework.
引用
收藏
页码:2398 / 2402
页数:5
相关论文
共 50 条
  • [21] Resource optimization for UAV-assisted mobile edge computing system based on deep reinforcement learning
    Yu, Fan
    Yang, Dingcheng
    Wu, Fahui
    Wang, Yapeng
    He, Hao
    PHYSICAL COMMUNICATION, 2023, 59
  • [22] Resource Allocation and Trajectory Design in UAV-Assisted Jamming Wideband Cognitive Radio Networks
    Wang, Yuhao
    Chen, Long
    Zhou, Yifan
    Liu, Xiaodong
    Zhou, Fuhui
    Al-Dhahir, Naofal
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (02) : 635 - 647
  • [23] UAV-Assisted Edge computing with 3D Trajectory Design and Resource Allocation
    Wen, Pengle
    Hu, Xiaoyan
    Wong, Kai-Kit
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,
  • [24] Resource allocation for UAV-assisted 5G mMTC slicing networks using deep reinforcement learning
    Gupta, Rohit Kumar
    Kumar, Saubhik
    Misra, Rajiv
    TELECOMMUNICATION SYSTEMS, 2023, 82 (01) : 141 - 159
  • [25] Joint Resource Allocation and Trajectory Design for UAV-assisted Mobile Edge Computing Systems
    Ji, Jiequ
    Zhu, Kun
    Yi, Changyan
    Wang, Ran
    Niyato, Dusit
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [26] Resource allocation for UAV-assisted 5G mMTC slicing networks using deep reinforcement learning
    Rohit Kumar Gupta
    Saubhik Kumar
    Rajiv Misra
    Telecommunication Systems, 2023, 82 : 141 - 159
  • [27] Resource Allocation in UAV-Assisted Networks: A Clustering-Aided Reinforcement Learning Approach
    Zhou, Shiyang
    Cheng, Yufan
    Lei, Xia
    Peng, Qihang
    Wang, Jun
    Li, Shaoqian
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (11) : 12088 - 12103
  • [28] Deep Reinforcement Learning for Trajectory Design and Power Allocation in UAV Networks
    Zhao, Nan
    Cheng, Yiqiang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [29] Deep Reinforcement Learning for UAV-Assisted Emergency Response
    Lee, Isabella
    Babu, Vignesh
    Caesar, Matthew
    Nicol, David
    PROCEEDINGS OF THE 17TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS 2020), 2021, : 327 - 336
  • [30] Deep Reinforcement Learning for Task Offloading and Power Allocation in UAV-Assisted MEC System
    Zhao, Nan
    Ren, Fan
    Du, Wei
    Ye, Zhiyang
    INTERNATIONAL JOURNAL OF MOBILE COMPUTING AND MULTIMEDIA COMMUNICATIONS, 2021, 12 (04) : 32 - 51