UCl3 synthesis in molten LiCl-KCl and NaCl-MgCl2 via galvanically coupled uranium oxidation and FeCl2 reduction

被引:3
|
作者
Yankey, Jacob [1 ]
Chamberlain, Jarom [1 ]
Monreal, Marisa [2 ]
Jackson, Matt [2 ]
Simpson, Michael [1 ]
机构
[1] Univ Utah, Mat Sci & Engn Dept, 122 S Cent Campus Dr 304, Salt Lake City, UT 84112 USA
[2] Los Alamos Natl Lab, POB 1663, Los Alamos, NM 87545 USA
基金
欧洲研究理事会;
关键词
Molten salt; Pyroprocessing; Molten salt reactor; Electrochemistry; Electrorefining; TRICHLORIDE;
D O I
10.1007/s10967-023-08866-9
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Molten salt mixtures containing LiCl-KCl and NaCl-MgCl2 have been infused with UCl3 via reaction of U metal and FeCl2. The process starts with base salt (LiCl-KCl or NaCl-MgCl2) drying/purification using hydrochlorination via bubbling anhydrous HCl. An auto-titrator running in pH-stat mode was used to determine the point at which there is no net reaction with the salt. U metal is contained in a porous stainless steel basket as it is submerged in the molten salt. The byproduct Fe metal forms dendrites on the basket walls, allowing for simple separation from the molten salt. Based on analysis of salt samples using inductively coupled plasma mass spectroscopy, UCl3 yield of 90% was attained in both NaCl-MgCl2 at 550 degrees C and in LiCl-KCl at 450 degrees C. Open circuit potential difference between a W rod working electrode and a Ag/AgCl reference electrode indicated a UCl4 to UCl3 activity ratio of 1 x 10(-5). The iron dendrites were comprised of linked cubic structures with length scale of about 50 mu m.
引用
收藏
页码:2317 / 2328
页数:12
相关论文
共 23 条
  • [1] UCl3 synthesis in molten LiCl–KCl and NaCl–MgCl2 via galvanically coupled uranium oxidation and FeCl2 reduction
    Jacob Yankey
    Jarom Chamberlain
    Marisa Monreal
    Matt Jackson
    Michael Simpson
    Journal of Radioanalytical and Nuclear Chemistry, 2023, 332 : 2317 - 2328
  • [2] Thermodynamic Simulation of UCl3 Oxidation with Lead Chloride and UCl4 Reduction with Metallic Uranium in the Molten LiCl-KCl Eutectic
    Potapov, A. M.
    Kesikopoulos, V. A.
    Dedyukhin, A. E.
    Zaikov, Yu. P.
    RUSSIAN METALLURGY, 2023, 2023 (02): : 184 - 191
  • [3] Optimization of UCl3 and MgCl2 separation from molten LiCl-KCl eutectic salt via galvanic drawdown with sacrificial Gd anode
    Bagri, Prashant
    Ong, Joshua
    Zhang, Chao
    Simpson, Michael E.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 505 : 149 - 158
  • [4] Thermodynamic Simulation of UCl3 Oxidation with Lead Chloride and UCl4 Reduction with Metallic Uranium in the Molten LiCl–KCl Eutectic
    A. M. Potapov
    V. A. Kesikopoulos
    A. E. Dedyukhin
    Yu. P. Zaikov
    Russian Metallurgy (Metally), 2023, 2023 : 184 - 191
  • [5] Electrochemical Activity Measurements of UCl3 in Molten NaCl-MgCl2-UCl3
    Yankey, Jacob
    Monreal, Marisa
    Jackson, Matt
    Simpson, Michael
    JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2024, 10 (03):
  • [6] Real-time monitoring of uranium concentration in NaCl–MgCl2–UCl3 molten salt
    Chan-Yong Jung
    Tae-Hyeong Kim
    Sang-Eun Bae
    Journal of Radioanalytical and Nuclear Chemistry, 2023, 332 : 5233 - 5238
  • [7] Effects of NiCl2 and FeCl2 additives on the anodic dissolution behaviours of Inconel 600 in molten LiCl-KCl salts
    Jeon, Younghwan
    Hur, Jungho
    Jeong, Gwan Yoon
    Ohk, Seungmin
    Park, Jaeyeong
    CORROSION SCIENCE, 2023, 217
  • [8] Application of electrochemical and laser spectroscopic methods for composition measurements of UCl3-MgCl2-GdCl3 in LiCl-KCl molten salt
    Andrews, Hunter
    Phongikaroon, Supathorn
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [9] Electrorefining of Uranium Alloys Containing Palladium and Neodymium in 3LiCl–2KCl–UCl3 Melts
    D. I. Nikitin
    I. B. Polovov
    O. I. Rebrin
    Russian Metallurgy (Metally), 2023, 2023 : 1031 - 1039
  • [10] Electrochemical and Laser-Induced Breakdown Spectroscopy Signal Fusion for Detection of UCl3-GdCl3-MgCl2in LiCl-KCl Molten Salt
    Andrews, H.
    Phongikaroon, S.
    NUCLEAR TECHNOLOGY, 2021, 207 (04) : 617 - 626