Implementation and experimental validation of nonlocal damage in a large-strain elasto-viscoplastic FFT-based framework for predicting ductile fracture in 3D polycrystalline materials

被引:15
作者
Cocke, C. K. [1 ]
Mirmohammad, H. [1 ]
Zecevic, M. [2 ]
Phung, B. R. [1 ]
Lebensohn, R. A. [2 ]
Kingstedt, O. T. [1 ]
Spear, A. D. [1 ]
机构
[1] Univ Utah, Dept Mech Engn, Salt Lake City, UT 84112 USA
[2] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM USA
关键词
A; Ductility; Microstructures; B; Crystal plasticity; Finite strain; Continuum Damage Mechanics (CDM); FAST FOURIER-TRANSFORMS; PROGRESSIVE DAMAGE; CONTINUUM THEORY; SINGLE-CRYSTALS; PLASTICITY; COMPOSITES; STRESS; MODEL; DEFORMATION; FORMULATION;
D O I
10.1016/j.ijplas.2022.103508
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Ductile materials, such as metal alloys, can undergo substantial deformation before failure. Additionally, these materials are usually of polycrystalline composition and exhibit strongly anisotropic behavior at small length scales. Previously developed fast Fourier transform (FFT)-based models can model ductile fracture of isotropic materials or the elastic-plastic behavior of anisotropic polycrystalline materials; however, there remains a need to couple both capabilities. This work extends a large-strain FFT-based crystal plasticity model to simulate ductile fracture of polycrystalline materials. A triaxiality-based continuum damage mechanics (CDM) formu-lation is incorporated into a large-strain elasto-viscoplastic FFT (LS-EVPFFT) framework. The CDM formulation is augmented with an integral-based nonlocal regularization approach that correctly handles gas-phase material necessary to model unconstrained surfaces. To validate the damage-enabled LS-EVPFFT framework, mesoscale copper tensile coupons were machined using microwire electrical discharge machining and experimentally characterized using electron backscatter diffraction. In-situ optical digital image correlation was performed during uniaxial testing to provide a side-by-side comparison of the experimental and computational strain fields and stress-strain responses. The damage-enabled LS-EVPFFT framework can simulate the complete macroscopic stress-strain response of ductile polycrystals to failure. The model reproduces necking behavior that qualitatively agrees with experimental observations. By leveraging the relatively low computational cost of the damage-enabled LS-EVPFFT framework, the framework presented here allows the ductile fracture response of 3D polycrystalline materials to be tractably predicted.
引用
收藏
页数:27
相关论文
共 75 条
  • [1] ON THE MICROSTRUCTURAL ORIGIN OF CERTAIN INELASTIC MODELS
    AIFANTIS, EC
    [J]. JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1984, 106 (04): : 326 - 330
  • [2] Anderson E., 1999, LAPACK USERS GUIDE
  • [3] A new model of metal plasticity and fracture with pressure and Lode dependence
    Bai, Yuanli
    Wierzbicki, Tomasz
    [J]. INTERNATIONAL JOURNAL OF PLASTICITY, 2008, 24 (06) : 1071 - 1096
  • [4] Nonlocal integral formulations of plasticity and damage:: Survey of progress
    Bazant, ZP
    Jirásek, M
    [J]. JOURNAL OF ENGINEERING MECHANICS, 2002, 128 (11) : 1119 - 1149
  • [5] BAZANT ZP, 1984, J ENG MECH-ASCE, V110, P1666
  • [6] NONLOCAL CONTINUUM DAMAGE, LOCALIZATION INSTABILITY AND CONVERGENCE
    BAZANT, ZP
    PIJAUDIERCABOT, G
    [J]. JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1988, 55 (02): : 287 - 293
  • [7] A fast Fourier transform-based mesoscale field dislocation mechanics study of grain size effects and reversible plasticity in polycrystals
    Berbenni, Stephane
    Taupin, Vincent
    Lebensohn, Ricardo A.
    [J]. JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2020, 135
  • [8] Formulation of nonlocal damage models based on spectral methods for application to complex microstructures
    Boeff, Martin
    Gutknecht, Florian
    Engels, Philipp S.
    Ma, Anxin
    Hartmaier, Alexander
    [J]. ENGINEERING FRACTURE MECHANICS, 2015, 147 : 373 - 387
  • [9] The second Sandia Fracture Challenge: predictions of ductile failure under quasi-static and moderate-rate dynamic loading
    Boyce, B. L.
    Kramer, S. L. B.
    Bosiljevac, T. R.
    Corona, E.
    Moore, J. A.
    Elkhodary, K.
    Simha, C. H. M.
    Williams, B. W.
    Cerrone, A. R.
    Nonn, A.
    Hochhalter, J. D.
    Bomarito, G. F.
    Warner, J. E.
    Carter, B. J.
    Warner, D. H.
    Ingraffea, A. R.
    Zhang, T.
    Fang, X.
    Lua, J.
    Chiaruttini, V.
    Maziere, M.
    Feld-Payet, S.
    Yastrebov, V. A.
    Besson, J.
    Chaboche, J. -L.
    Lian, J.
    Di, Y.
    Wu, B.
    Novokshanov, D.
    Vajragupta, N.
    Kucharczyk, P.
    Brinnel, V.
    Doebereiner, B.
    Muenstermann, S.
    Neilsen, M. K.
    Dion, K.
    Karlson, K. N.
    Foulk, J. W., III
    Brown, A. A.
    Veilleux, M. G.
    Bignell, J. L.
    Sanborn, S. E.
    Jones, C. A.
    Mattie, P. D.
    Pack, K.
    Wierzbicki, T.
    Chi, S. -W.
    Lin, S. -P.
    Mahdavi, A.
    Predan, J.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2016, 198 (1-2) : 5 - 100
  • [10] The Sandia Fracture Challenge: blind round robin predictions of ductile tearing
    Boyce, B. L.
    Kramer, S. L. B.
    Fang, H. E.
    Cordova, T. E.
    Neilsen, M. K.
    Dion, K.
    Kaczmarowski, A. K.
    Karasz, E.
    Xue, L.
    Gross, A. J.
    Ghahremaninezhad, A.
    Ravi-Chandar, K.
    Lin, S. -P.
    Chi, S. -W.
    Chen, J. S.
    Yreux, E.
    Ruter, M.
    Qian, D.
    Zhou, Z.
    Bhamare, S.
    O'Connor, D. T.
    Tang, S.
    Elkhodary, K. I.
    Zhao, J.
    Hochhalter, J. D.
    Cerrone, A. R.
    Ingraffea, A. R.
    Wawrzynek, P. A.
    Carter, B. J.
    Emery, J. M.
    Veilleux, M. G.
    Yang, P.
    Gan, Y.
    Zhang, X.
    Chen, Z.
    Madenci, E.
    Kilic, B.
    Zhang, T.
    Fang, E.
    Liu, P.
    Lua, J.
    Nahshon, K.
    Miraglia, M.
    Cruce, J.
    DeFrese, R.
    Moyer, E. T.
    Brinckmann, S.
    Quinkert, L.
    Pack, K.
    Luo, M.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2014, 186 (1-2) : 5 - 68