Channel linear Weingarten surfaces in space forms

被引:1
|
作者
Hertrich-Jeromin, Udo [1 ]
Pember, Mason [2 ]
Polly, Denis [3 ]
机构
[1] TU Wien, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10-104, A-1040 Vienna, Austria
[2] Univ Bath, Dept Math Sci, Bath BA2 7AY, England
[3] Kobe Univ, Dept Math, 1-1 Rokkodai Cho,Nada Ku, Kobe 6578501, Japan
关键词
Lie sphere geometry; Linear Weingarten surface; Channel surface; Isothermic surface; Isothermic sphere congruence; Omega surface; Constant Gauss curvature; Jacobi elliptic function; FLAT FRONTS;
D O I
10.1007/s13366-022-00664-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Channel linear Weingarten surfaces in space forms are investigated in a Lie sphere geometric setting, which allows for a uniform treatment of different ambient geometries. We show that any channel linear Weingarten surface in a space form is isothermic and, in particular, a surface of revolution in its ambient space form. We obtain explicit parametrisations for channel surfaces of constant Gauss curvature in space forms, and thereby for a large class of linear Weingarten surfaces up to parallel transformation.
引用
收藏
页码:969 / 1009
页数:41
相关论文
共 50 条
  • [1] Channel linear Weingarten surfaces in space forms
    Udo Hertrich-Jeromin
    Mason Pember
    Denis Polly
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2023, 64 : 969 - 1009
  • [2] Time–like Linear Weingarten Surfaces in Lorentzian Space Forms
    Da Feng Zuo
    Acta Mathematica Sinica, 2006, 22 : 1021 - 1026
  • [3] CHANNEL LINEAR WEINGARTEN SURFACES
    Hertrich-Jeromin, Udo
    Mundilova, Klara
    Tjaden, Ekkehard-Heinrich
    JOURNAL OF GEOMETRY AND SYMMETRY IN PHYSICS, 2015, 40 : 25 - 33
  • [4] Time-like linear Weingarten surfaces in Lorentzian space forms
    Zuo, Da Feng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2006, 22 (04) : 1021 - 1026
  • [5] Time-like Linear Weingarten Surfaces in Lorentzian Space Forms
    Da Feng ZUO Department of Mathematical Sciences
    Acta Mathematica Sinica(English Series), 2006, 22 (04) : 1021 - 1026
  • [6] Some Characterizations of Linear Weingarten Surfaces in 3-Dimensional Space Forms
    Luo, Yan Ru
    Yang, Dan
    Zhu, Xiao Ying
    RESULTS IN MATHEMATICS, 2022, 77 (03)
  • [7] Some Characterizations of Linear Weingarten Surfaces in 3-Dimensional Space Forms
    Yan Ru Luo
    Dan Yang
    Xiao Ying Zhu
    Results in Mathematics, 2022, 77
  • [8] LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS
    Chao, Xiaoli
    Wang, Peijun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 567 - 577
  • [9] Linear Weingarten Helicoidal Surfaces in Isotropic Space
    Yoon, Dae Won
    Lee, Jae Won
    SYMMETRY-BASEL, 2016, 8 (11):
  • [10] LINEAR WEINGARTEN SURFACES FOLIATED BY CIRCLES IN MINKOWSKI SPACE
    Kalkan, Ozgur Boyacioglu
    Lopez, Rafael
    Saglam, Derya
    TAIWANESE JOURNAL OF MATHEMATICS, 2011, 15 (05): : 1897 - 1917