An Overview of Challenges and Strategies for Stabilizing Zinc Anodes in Aqueous Rechargeable Zn-Ion Batteries

被引:39
作者
Thieu, Nhat Anh [1 ]
Li, Wei [1 ]
Chen, Xiujuan [1 ]
Hu, Shanshan [1 ]
Tian, Hanchen [1 ]
Tran, Ha Ngoc Ngan [2 ]
Li, Wenyuan [2 ]
Reed, David M. [3 ]
Li, Xiaolin [3 ]
Liu, Xingbo [1 ]
机构
[1] West Virginia Univ, Benjamin M Statler Coll Engn & Mineral Resources, Dept Mech & Aerosp Engn, Morgantown, WV 26506 USA
[2] West Virginia Univ, Benjamin M Statler Coll Engn & Mineral Resources, Dept Chem & Biomed Engn, Morgantown, WV 26506 USA
[3] Pacific Northwest Natl Lab, Richland, WA 99354 USA
来源
BATTERIES-BASEL | 2023年 / 9卷 / 01期
关键词
zinc ion batteries; Zn metal anode; dendrite; corrosion; hydrogen evolution; HYDROGEN EVOLUTION REACTIONS; DENDRITE FORMATION; LONG-LIFE; LOW-COST; ELECTRODE MATERIALS; RECENT PROGRESS; METAL ANODE; LITHIUM; LIQUID; WATER;
D O I
10.3390/batteries9010041
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Aqueous rechargeable zinc ion batteries (ZIBs) have been revived and are considered a promising candidate for scalable electrochemical energy storage systems due to their intrinsic safety, low cost, large abundance, mature recyclability, competitive electrochemical performance, and sustainability. However, the deployment of aqueous rechargeable ZIBs is still hampered by the poor electrochemical stability and reversibility of Zn anodes, which is a common, inherent issue for most metal-based anodes. This review presents a comprehensive and timely overview of the challenges and strategies of Zn anodes toward durable ZIBs. First, several challenges that significantly reduce the Coulombic efficiency and cycling stability of Zn anodes are briefly discussed including dendrite formation, hydrogen evolution, and corrosion. Then, the mitigation strategies are summarized in terms of modifying the electrode/electrolyte interfaces, designing electrode structures, and optimizing electrolytes and separators. Further, we comprehensively discuss the mechanisms behind these issues and improvement strategies with respect to the anodes, electrolytes, and separators. Lastly, we provide perspectives and critical analyses of remaining challenges, outlook, and future direction for accelerating the practical application of aqueous rechargeable ZIBs.
引用
收藏
页数:46
相关论文
共 217 条
[1]   Elimination of Zinc Dendrites by Graphene Oxide Electrolyte Additive for Zinc-Ion Batteries [J].
Abdulla, Jufni ;
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Sriprachuabwong, Chakrit ;
Kheawhom, Soorathep ;
Wangyao, Panyawat ;
Qin, Jiaqian .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) :4602-4609
[2]   Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts [J].
Ali, Asad ;
Long, Fei ;
Shen, Pei Kang .
ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (04)
[3]   Rechargeable aqueous hybrid ion batteries: developments and prospects [J].
Ao, Huaisheng ;
Zhao, Yingyue ;
Zhou, Jie ;
Cai, Wenlong ;
Zhang, Xiaotan ;
Zhu, Yongchun ;
Qian, Yitai .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) :18708-18734
[4]   Interfacial parasitic reactions of zinc anodes in zinc ion batteries: Underestimated corrosion and hydrogen evolution reactions and their suppression strategies [J].
Bayaguud, Aruuhan ;
Fu, Yanpeng ;
Zhu, Changbao .
JOURNAL OF ENERGY CHEMISTRY, 2022, 64 (246-262) :246-262
[5]   Cationic Surfactant-Type Electrolyte Additive Enables Three-Dimensional Dendrite-Free Zinc Anode for Stable Zinc-Ion Batteries [J].
Bayaguud, Aruuhan ;
Luo, Xiao ;
Fu, Yanpeng ;
Zhu, Changbao .
ACS ENERGY LETTERS, 2020, 5 (09) :3012-3020
[6]   Stable and High-Energy-Density Zn-Ion Rechargeable Batteries Based on a MoS2-Coated Zn Anode [J].
Bhoyate, Sanket ;
Mhin, Sungwook ;
Jeon, Jae-eun ;
Park, KyoungRyeol ;
Kim, Junyoung ;
Choi, Wonbong .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (24) :27249-27257
[7]   Scientific Challenges for the Implementation of Zn-Ion Batteries [J].
Blanc, Lauren E. ;
Kundu, Dipan ;
Nazar, Linda F. .
JOULE, 2020, 4 (04) :771-799
[8]   Chemically resistant Cu-Zn/Zn composite anode for long cycling aqueous batteries [J].
Cai, Zhao ;
Ou, Yangtao ;
Wang, Jindi ;
Xiao, Run ;
Fu, Lin ;
Yuan, Zhu ;
Zhan, Renmin ;
Sun, Yongming .
ENERGY STORAGE MATERIALS, 2020, 27 :205-211
[9]   Strategies of regulating Zn2+ solvation structures for dendrite-free and side reaction-suppressed zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Zhang, Xinyu ;
Zeng, Zhiyuan ;
Qin, Jiaqian ;
Huang, Yunhui .
ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) :499-528
[10]   Modulating Zn deposition via ceramic-cellulose separator with interfacial polarization effect for durable zinc anode [J].
Cao, Jin ;
Zhang, Dongdong ;
Gu, Chao ;
Zhang, Xinyu ;
Okhawilai, Manunya ;
Wang, Shanmin ;
Han, Jiantao ;
Qin, Jiaqian ;
Huang, Yunhui .
NANO ENERGY, 2021, 89