Development and validation of a cardiovascular disease risk prediction model for patients with non-dialysis-dependent chronic kidney diseases based on the nomogram

被引:0
作者
Li, Ning [1 ]
Wang, Zhao [1 ]
Yang, Xue [1 ]
Xie, Haitao [1 ]
Gu, Qinglong [1 ]
Guo, Jun [1 ]
Li, Zhiqiang [2 ,3 ]
机构
[1] Nanjing Univ Chinese Med, Jiangsu Prov Hosp Chinese Med, Affiliated Hosp, Nanjing 210029, Peoples R China
[2] Liyang Hosp Chinese Med, Liyang 213300, Peoples R China
[3] Liyang Hosp Chinese Med, Div Nephrol, 121 Xihou Rd, Liyang 213300, Jiangsu, Peoples R China
关键词
GLOMERULAR-FILTRATION-RATE; ALL-CAUSE; ALBUMINURIA; SELECTION; OUTCOMES;
D O I
10.1159/000527856
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
IntroductionMost CKD patients experience cardiovascular issues before commencing renal replacement therapy. An accuracy prediction model is helpful for physicians to assess cardiovascular prognoses in each individual, and to provide insights on how to outline individualized lines of therapy.MethodThis study enrolled 1138 participants with non-dialysis-dependent chronic kidney disease (NDD-CKD). Following a proportion of 7:3, patients were randomly assigned to training and validation cohorts. The relevant predictors of cardiovascular events were screened using the least absolute shrinkage and selection operator (Lasso) regression. The area under the receiver operating characteristic curve (AUC) and the calibration curve with 1000 bootstraps resamples were used to assess the nomogram's performance. Tests on the discrimination of the prediction model used Kaplan-Meier (KM) curve.ResultsAfter screening all the predictors by lasso regression, the five remaining ones (albumin, estimated glomerular filtration rate, etiology of CKD, cardiovascular disease history, and age) were used to construct the prediction model. The AUC of 1-year, 2-year, and 3-year was 0.81 (95% CI = 0.75-0.87), 0.80 (95% CI = 0.75-0.86), and 0.80 (95% CI = 0.73-0.86), respectively. The calibration curve and the KM curve showed good prediction features, and the external validation also had a good prediction performance (AUC of 1-, 2-, and 3-years were 0.77, 0.84, and 0.82, respectively). ConclusionWe successfully developed a novel nomogram that has decent prediction performance and can be used for assessing the probability of cardiovascular events in patients with NDD-CKD, displaying valuable potential for clinical application.
引用
收藏
页码:7 / 17
页数:11
相关论文
共 33 条
[1]   Left Ventricular Rotational Mechanics in Acute Myocardial Infarction and in Chronic (Ischemic and Nonischemic) Heart Failure Patients [J].
Bertini, Matteo ;
Nucifora, Gaetano ;
Marsan, Nina Ajmone ;
Delgado, Victoria ;
van Bommel, Rutger J. ;
Boriani, Giuseppe ;
Biffi, Mauro ;
Holman, Eduard R. ;
Van der Wall, Ernst E. ;
Schalij, Martin J. ;
Bax, Jeroen J. .
AMERICAN JOURNAL OF CARDIOLOGY, 2009, 103 (11) :1506-1512
[2]   Low serum albumin levels and in-hospital outcomes in patients with ST segment elevation myocardial infarction [J].
Biccire, Flavio Giuseppe ;
Pastori, Daniele ;
Tanzilli, Alessandra ;
Pignatelli, Pasquale ;
Viceconte, Nicola ;
Barilla, Francesco ;
Versaci, Francesco ;
Gaudio, Carlo ;
Violi, Francesco ;
Tanzilli, Gaetano .
NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2021, 31 (10) :2904-2911
[3]  
Catapano Alberico L, 2017, Rev Esp Cardiol (Engl Ed), V70, P115, DOI 10.1016/j.rec.2017.01.002
[4]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.1002/bjs.9736, 10.1186/s12916-014-0241-z, 10.1038/bjc.2014.639, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025]
[5]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[6]   Rationale and design of the Kidney Precision Medicine Project [J].
de Boer, Ian H. ;
Alpers, Charles E. ;
Azeloglu, Evren U. ;
Balis, Ulysses G. J. ;
Barasch, Jonathan M. ;
Barisoni, Laura ;
Blank, Kristina N. ;
Bomback, Andrew S. ;
Brown, Keith ;
Dagher, Pierre C. ;
Dighe, Ashveena L. ;
Eadon, Michael T. ;
El-Achkar, Tarek M. ;
Gaut, Joseph P. ;
Hacohen, Nir ;
He, Yongqun ;
Hodgin, Jeffrey B. ;
Jain, Sanjay ;
Kellum, John A. ;
Kiryluk, Krzysztof ;
Knight, Richard ;
Laszik, Zoltan G. ;
Lienczewski, Chrysta ;
Mariani, Laura H. ;
McClelland, Robyn L. ;
Menez, Steven ;
Moledina, Dennis G. ;
Mooney, Sean D. ;
O'Toole, John F. ;
Palevsky, Paul M. ;
Parikh, Chirag R. ;
Poggio, Emilio D. ;
Rosas, Sylvia E. ;
Rosengart, Matthew R. ;
Sarwal, Minnie M. ;
Schaub, Jennifer A. ;
Sedor, John R. ;
Sharma, Kumar ;
Steck, Becky ;
Toto, Robert D. ;
Troyanskaya, Olga G. ;
Tuttle, Katherine R. ;
Vazquez, Miguel A. ;
Waikar, Sushrut S. ;
Williams, Kayleen ;
Wilson, Francis Perry ;
Zhang, Kun ;
Iyengar, Ravi ;
Kretzler, Matthias ;
Himmelfarb, Jonathan .
KIDNEY INTERNATIONAL, 2021, 99 (03) :498-510
[7]   Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention [J].
Gansevoort, Ron T. ;
Correa-Rotter, Ricardo ;
Hemmelgarn, Brenda R. ;
Jafar, Tazeen H. ;
Heerspink, Hiddo J. Lambers ;
Mann, Johannes F. ;
Matsushita, Kunihiro ;
Wen, Chi Pang .
LANCET, 2013, 382 (9889) :339-352
[8]   Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization [J].
Go, AS ;
Chertow, GM ;
Fan, DJ ;
McCulloch, CE ;
Hsu, CY .
NEW ENGLAND JOURNAL OF MEDICINE, 2004, 351 (13) :1296-1305
[9]   Management of Traditional Cardiovascular Risk Factors in CKD: What Are the Data? [J].
Gregg, L. Parker ;
Hedayati, S. Susan .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2018, 72 (05) :728-744
[10]   Time-dependent ROC curves for censored survival data and a diagnostic marker [J].
Heagerty, PJ ;
Lumley, T ;
Pepe, MS .
BIOMETRICS, 2000, 56 (02) :337-344