Laser beam powder bed fusion (LB-PBF) is a widely-used metal additive manufacturing process due to its high potential for fabrication flexibility and quality. Its process and performance optimization are key to improving product quality and promote further adoption of LB-PBF. In this article, the state-of-the-art machine learning (ML) applications for process and performance optimization in LB-PBF are reviewed. In these applications, ML is used to model the process-structure-property relationships in a data-driven way and optimize process parameters for high-quality fabrication. We review these applications in terms of their modeled relationships by ML (e.g., process-structure, process-property, or structure-property) and categorize the ML algorithms into interpretable ML, conventional ML, and deep ML according to interpretability and accuracy. This way may be particularly useful for practitioners as a comprehensive reference for selecting the ML algorithms according to the particular needs. It is observed that of the three types of ML above, conventional ML has been applied in process and performance optimization the most due to its balanced performance in terms of model accuracy and interpretability. To explore the power of ML in discovering new knowledge and insights, interpretation with additional steps is often needed for complex models arising from conventional ML and deep ML, such as model-agnostic methods or sensitivity analysis. In the future, enhancing the interpretability of ML, standardizing a systemic procedure for ML, and developing a collaborative platform to share data and findings will be critical to promote the integration of ML in LB-PBF applications on a large scale.