A Blowup Criteria of Smooth Solutions to the 3D Boussinesq Equations

被引:0
作者
Ben Omrane, Ines [1 ]
Gala, Sadek [2 ]
Thera, Michel [3 ]
机构
[1] Imam Mohammad Ibn Saud Islamic Univ IMSIU, Fac Sci, Dept Math & Stat, POB 90950, Riyadh 11623, Saudi Arabia
[2] Ecole Normale Super Mostaganem, Dept Sci Exactes, Box 227, Mostaganem 27000, Algeria
[3] Univ Limoges, XLIM UMR CNRS 7252, Limoges, France
来源
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY | 2024年 / 55卷 / 01期
关键词
Boussinesq equations; Besov space; Smooth solution; Blow-up; NAVIER-STOKES-EQUATIONS; IMPROVED REGULARITY CRITERION; UP CRITERION; LOCAL EXISTENCE; BESOV-SPACES; INEQUALITIES;
D O I
10.1007/s00574-024-00383-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we are concerned with the main mechanism for possible blow-up criteria of smooth solutions to the 3D incompressible Boussinesq equations. The main results state that the finite-time blowup/global existence of smooth solutions to the Boussinesq equation is controlled by either of the criteria uh is an element of L20,T ;B infinity,infinity 0(R3)or backward difference huh is an element of L10,T ;B infinity,infinity 0R3,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} u_{h}\in L<^>{2}\left( 0,T;\dot{B}_{\infty ,\infty }<^>{0}({\mathbb {R}} <^>{3})\right) \quad \text {or}\quad \nabla _{h}u_{h}\in L<^>{1}\left( 0,T;\dot{B} _{\infty ,\infty }<^>{0}\left( {\mathbb {R}}<^>{3}\right) \right) , \end{aligned}$$\end{document}where uh\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{h}$$\end{document} and backward difference h\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nabla _{h}$$\end{document} denote the horizontal components of the velocity field and partial derivative with respect to the horizontal variables, respectively. We present a new simple proof for the regularity of this system without using the higher-order energy law and without any assumptions on the temperature theta.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta .$$\end{document} Our results extend the Navier-Stokes equations results in Dong and Zhang (Nonlinear Anal Real World Appl 11:2415-2421, 2010), Dong and Chen (J Math Anal Appl 338:1-10, 2008) and Gala and Ragusa (Electron J Qual Theory Differ Equ, 2016a) to Boussinesq equations.
引用
收藏
页数:20
相关论文
共 40 条
  • [1] A Regularity Criterion for the 3D Density-Dependent MHD Equations
    Alghamdi, Ahmad Mohammad
    Gala, Sadek
    Ragusa, Maria Alessandra
    Zhang, Zujin
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (02): : 241 - 251
  • [2] Local existence and blow-up criterion of Holder continuous solutions of the Boussinesq equations
    Chae, D
    Kim, SK
    Nam, HS
    [J]. NAGOYA MATHEMATICAL JOURNAL, 1999, 155 : 55 - 80
  • [3] Local existence and blow-up criterion for the Boussinesq equations
    Chae, D
    Nam, HS
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 : 935 - 946
  • [4] Infinite Prandtl number convection
    Constantin, P
    Doering, CR
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1999, 94 (1-2) : 159 - 172
  • [5] Regularity criterion of weak solutions to the 3D Navier-Stokes equations via two velocity components
    Dong, Bo-Qing
    Chen, Zhi-Min
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (01) : 1 - 10
  • [6] The BKM criterion for the 3D Navier-Stokes equations via two velocity components
    Dong, Bo-Qing
    Zhang, Zhifei
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2415 - 2421
  • [7] A note on regularity criterion for the 3D Boussinesq system with partial viscosity
    Fan, Jishan
    Zhou, Yong
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (05) : 802 - 805
  • [8] Regularity criteria for the 3D density-dependent Boussinesq equations
    Fan, Jishan
    Ozawa, Tohru
    [J]. NONLINEARITY, 2009, 22 (03) : 553 - 568
  • [9] Beale-Kato-Majda Regularity Criterion of Smooth Solutions for the Hall-MHD Equations with Zero Viscosity
    Gala, Sadek
    Galakhov, Eugeny
    Ragusa, Maria Alessandra
    Salieva, Olga
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (01): : 229 - 241
  • [10] A Regularity Criterion of Weak Solutions to the 3D Boussinesq Equations
    Gala, Sadek
    Ragusa, Maria Alessandra
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (02): : 513 - 525