Mapping Paddy Cropland in Guntur District using Machine Learning and Google Earth Engine utilizing Images from Sentinel-1 and Sentinel-2

被引:0
|
作者
Nagendram, Pureti Siva [1 ]
Satyanarayana, Penke [2 ]
Teja, Panduranga Ravi [2 ]
机构
[1] KLEF, Dept ECE, Vijayawada, India
[2] KLEF, Dept ECE, Vaddeswaram, India
关键词
-paddy; cropland mapping; machine learning; GEE; Sentinel-1 and Sentinel-2; Guntur; RICE AGRICULTURE; TIME-SERIES; CLASSIFICATION; SOUTH; ASIA;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ensuring global food security necessitates vigilant monitoring of crop quantity and quality. Therefore, the reliable classification of croplands and diverse Land Covers (LC) becomes pivotal in fostering sustainable agricultural progress and safeguarding national food security. The Seasonal Crop Inventory (SCI) emerges as a strong asset. In this study, Sentinel-1 (S1) and Sentinel-2 (S2) image data were used to show varied land uses and paddy crops in Guntur district, Andhra Pradesh, India, during the 2021 growing season. Employing a technologically advanced space-based remote sensing approach, this study exploited the Google Earth Engine (GEE) and a range of classification techniques, including Random Forest (RF) and Classification Regression Trees (CART), to generate pixel-based SCI tailored to the area under investigation. The results underscored the reliability of GEE-based cropland mapping in the region, demonstrating a satisfactory level of classification accuracy, surpassing 97% across distinct time intervals in overall accuracy values, Kappa coefficients, and F1-Score.
引用
收藏
页码:12427 / 12432
页数:6
相关论文
共 50 条
  • [41] Seagrass mapping of north-eastern Brazil using Google Earth Engine and Sentinel-2 imagery
    Deeks, Emma
    Magalhaes, Karine
    Traganos, Dimosthenis
    Ward, Raymond
    Normande, Iran
    Dawson, Terence P.
    Kratina, Pavel
    ENVIRONMENTAL AND SUSTAINABILITY INDICATORS, 2024, 24
  • [42] Forest Canopy Height Mapping by Synergizing ICESat-2, Sentinel-1, Sentinel-2 and Topographic Information Based on Machine Learning Methods
    Xi, Zhilong
    Xu, Huadong
    Xing, Yanqiu
    Gong, Weishu
    Chen, Guizhen
    Yang, Shuhang
    REMOTE SENSING, 2022, 14 (02)
  • [43] Paddy Rice mapping in fragmented lands by improved phenology curve and correlation measurements on Sentinel-2 imagery in Google earth engine
    Namazi, Fateme
    Ezoji, Mehdi
    Parmehr, Ebadat Ghanbari
    ENVIRONMENTAL MONITORING AND ASSESSMENT, 2023, 195 (10)
  • [44] An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine
    Ni, Rongguang
    Tian, Jinyan
    Li, Xiaojuan
    Yin, Dameng
    Li, Jiwei
    Gong, Huili
    Zhang, Jie
    Zhu, Lin
    Wu, Dongli
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 282 - 296
  • [45] Automatic Mapping of Rice Growth Stages Using the Integration of SENTINEL-2, MOD13Q1, and SENTINEL-1
    Ramadhani, Fadhlullah
    Pullanagari, Reddy
    Kereszturi, Gabor
    Procter, Jonathan
    REMOTE SENSING, 2020, 12 (21) : 1 - 21
  • [46] Mapping management intensity types in grasslands with synergistic use of Sentinel-1 and Sentinel-2 satellite images
    Bartold, Maciej
    Kluczek, Marcin
    Wroblewski, Konrad
    Dabrowska-Zielinska, Katarzyna
    Golinski, Piotr
    Golinska, Barbara
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [47] Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region
    De Luca, Giandomenico
    Silva, Joao M. N.
    Di Fazio, Salvatore
    Modica, Giuseppe
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 52 - 70
  • [48] Using Sentinel-1 and Sentinel-2 Time Series for Slangbos Mapping in the Free State Province, South Africa
    Urban, Marcel
    Schellenberg, Konstantin
    Morgenthal, Theunis
    Dubois, Clemence
    Hirner, Andreas
    Gessner, Ursula
    Mogonong, Buster
    Zhang, Zhenyu
    Baade, Jussi
    Collett, Anneliza
    Schmullius, Christiane
    REMOTE SENSING, 2021, 13 (17)
  • [49] Mapping Floods in Lowland Forest Using Sentinel-1 and Sentinel-2 Data and an Object-Based Approach
    Gasparovic, Mateo
    Klobucar, Damir
    FORESTS, 2021, 12 (05):
  • [50] High-Resolution Mapping of Paddy Rice Extent and Growth Stages across Peninsular Malaysia Using a Fusion of Sentinel-1 and 2 Time Series Data in Google Earth Engine
    Fatchurrachman
    Rudiyanto
    Soh, Norhidayah Che
    Shah, Ramisah Mohd
    Giap, Sunny Goh Eng
    Setiawan, Budi Indra
    Minasny, Budiman
    REMOTE SENSING, 2022, 14 (08)