Effectiveness of data augmentation to predict students at risk using deep learning algorithms

被引:4
作者
Fahd, Kiran [1 ]
Miah, Shah J. [1 ]
机构
[1] Univ Newcastle, Newcastle Business Sch, Newcastle City Campus, Newcastle, NSW, Australia
关键词
Deep learning; Data augmentation; Multilayer perceptron (MLP); Deep forest (DF); SMOTE; Distribution-based algorithm; HIGHER-EDUCATION; PERFORMANCE; MANAGEMENT; ANALYTICS; DESIGN; SMOTE;
D O I
10.1007/s13278-023-01117-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The academic intervention to predict at-risk higher education (HE) students requires effective data model development. Such data modelling projects in the HE context may have common issues related to (a) adopting small-scale modelling that gives limited options for early intervention and (b) using imbalanced data that hinders capturing effective details of poorly performing students. We address the issues going beyond the distribution-based algorithm, using a multilayer perceptron classifier which shows better on confusion metric, recall, and precision measures for identifying at-risk students. Our proposed deep learning-based model, which uses data augmentation techniques to supplement the data instances and balance the dataset, aims to improve the prediction accuracy of whether the student will fail or not based on their interaction with the learning management systems to prevent struggling students from evasion.
引用
收藏
页数:16
相关论文
共 50 条
[31]   Wireless Positioning Using Deep Learning with Data Augmentation Technique [J].
Tian, Kegang ;
Song, Shijie ;
Xu, Wenbo ;
Li, Dong ;
Yang, Kun .
2021 IEEE 32ND ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2021,
[32]   UAV Payload Detection Using Deep Learning and Data Augmentation [J].
Ku, Ilmun ;
Roh, Seungyeon ;
Kim, Gyeongyeong ;
Taylor, Charles ;
Wang, Yaqin ;
Matson, Eric T. .
2022 SIXTH IEEE INTERNATIONAL CONFERENCE ON ROBOTIC COMPUTING, IRC, 2022, :18-25
[33]   Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning [J].
Zeiser, Felipe Andre ;
da Costa, Cristiano Andre ;
Zonta, Tiago ;
Marques, Nuno M. C. ;
Roehe, Adriana Vial ;
Moreno, Marcelo ;
Righi, Rodrigo da Rosa .
JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) :858-868
[34]   Supporting Malaria Diagnosis Using Deep Learning and Data Augmentation [J].
Hoyos, Kenia ;
Hoyos, William .
DIAGNOSTICS, 2024, 14 (07)
[35]   Data augmentation for deep-learning-based electroencephalography [J].
Lashgari, Elnaz ;
Liang, Dehua ;
Maoz, Uri .
JOURNAL OF NEUROSCIENCE METHODS, 2020, 346
[36]   Survey on Videos Data Augmentation for Deep Learning Models [J].
Cauli, Nino ;
Recupero, Diego Reforgiato .
FUTURE INTERNET, 2022, 14 (03)
[37]   Geometric Morphometric Data Augmentation Using Generative Computational Learning Algorithms [J].
Courtenay, Lloyd A. ;
Gonzalez-Aguilera, Diego .
APPLIED SCIENCES-BASEL, 2020, 10 (24)
[38]   Text Data Augmentation for Deep Learning [J].
Shorten, Connor ;
Khoshgoftaar, Taghi M. ;
Furht, Borko .
JOURNAL OF BIG DATA, 2021, 8 (01)
[39]   Text Data Augmentation for Deep Learning [J].
Connor Shorten ;
Taghi M. Khoshgoftaar ;
Borko Furht .
Journal of Big Data, 8
[40]   Apply Machine Learning Algorithms to Predict At-Risk Students to Admission Period [J].
Embarak, Ossama .
2020 SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY TRENDS (ITT 2020), 2020, :190-195