Hybrid Spiking Fully Convolutional Neural Network for Semantic Segmentation

被引:3
作者
Zhang, Tao [1 ]
Xiang, Shuiying [1 ,2 ]
Liu, Wenzhuo [1 ]
Han, Yanan [1 ]
Guo, Xingxing [1 ]
Hao, Yue [2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Peoples R China
[2] Xidian Univ, State Key Discipline Lab Wide Bandgap Semicond Tec, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
spiking convolutional neural network; semantic segmentation; surrogate gradient; supervised training; INTELLIGENCE; PROCESSOR;
D O I
10.3390/electronics12173565
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The spiking neural network (SNN) exhibits distinct advantages in terms of low power consumption due to its event-driven nature. However, it is limited to simple computer vision tasks because the direct training of SNNs is challenging. In this study, we propose a hybrid architecture called the spiking fully convolutional neural network (SFCNN) to expand the application of SNNs in the field of semantic segmentation. To train the SNN, we employ the surrogate gradient method along with backpropagation. The accuracy of mean intersection over union (mIoU) for the VOC2012 dataset is higher than that of existing spiking FCNs by almost 30%. The accuracy of mIoU can reach 39.6%. Moreover, the proposed hybrid SFCNN achieved excellent segmentation performance for other datasets such as COCO2017, DRIVE, and Cityscapes. Our hybrid SFCNN is a valuable and interesting contribution to extending the functionality of SNNs, especially for power-constrained applications.
引用
收藏
页数:13
相关论文
共 38 条
[1]   True North: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip [J].
Akopyan, Filipp ;
Sawada, Jun ;
Cassidy, Andrew ;
Alvarez-Icaza, Rodrigo ;
Arthur, John ;
Merolla, Paul ;
Imam, Nabil ;
Nakamura, Yutaka ;
Datta, Pallab ;
Nam, Gi-Joon ;
Taba, Brian ;
Beakes, Michael ;
Brezzo, Bernard ;
Kuang, Jente B. ;
Manohar, Rajit ;
Risk, William P. ;
Jackson, Bryan ;
Modha, Dharmendra S. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2015, 34 (10) :1537-1557
[2]   An improved matched filter for blood vessel detection of digital retinal images [J].
Al-Rawi, Mohammed ;
Qutaishat, Munib ;
Arrar, Mohammed .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (02) :262-267
[3]  
[Anonymous], About us
[4]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[5]  
Bu T, 2023, Arxiv, DOI arXiv:2303.04347
[6]  
Chaurasia A, 2017, 2017 IEEE VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP)
[7]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[8]   Loihi: A Neuromorphic Manycore Processor with On-Chip Learning [J].
Davies, Mike ;
Srinivasa, Narayan ;
Lin, Tsung-Han ;
Chinya, Gautham ;
Cao, Yongqiang ;
Choday, Sri Harsha ;
Dimou, Georgios ;
Joshi, Prasad ;
Imam, Nabil ;
Jain, Shweta ;
Liao, Yuyun ;
Lin, Chit-Kwan ;
Lines, Andrew ;
Liu, Ruokun ;
Mathaikutty, Deepak ;
Mccoy, Steve ;
Paul, Arnab ;
Tse, Jonathan ;
Venkataramanan, Guruguhanathan ;
Weng, Yi-Hsin ;
Wild, Andreas ;
Yang, Yoonseok ;
Wang, Hong .
IEEE MICRO, 2018, 38 (01) :82-99
[9]  
Ding JH, 2021, Arxiv, DOI arXiv:2105.11654
[10]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338