Development and validation of a model predicting mild stroke severity on admission using electronic health record data

被引:2
|
作者
Waddell, Kimberly J. [1 ,2 ,3 ]
Myers, Laura J. [4 ,5 ,6 ]
Perkins, Anthony J. [4 ,6 ,7 ,8 ]
Sico, Jason J. [9 ,10 ,11 ,12 ]
Sexson, Ali [4 ]
Burrone, Laura [12 ]
Taylor, Stanley [4 ,6 ]
Koo, Brian [9 ,10 ,11 ,12 ]
Daggy, Joanne K. [4 ,6 ,7 ,8 ]
Bravata, Dawn M. [4 ,5 ,6 ,13 ,14 ]
机构
[1] Crescenz VA Med Ctr, VA Ctr Hlth Equ Res & Promot CHERP, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Phys Med & Rehabil, Philadelphia, PA USA
[3] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
[4] Richard L Roudebush VA Med Ctr, VA HSR &D Ctr Hlth Informat & Commun CH, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Med, Indianapolis, IN USA
[6] Expanding Expertise Ehlth Network Dev EXTEND, Dept Vet Affairs VA Hlth Serv Res & Dev HSR&D, Qual Enhancement Res Initiat QUERI, Indianapolis, IN USA
[7] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[8] Fairbanks Sch Publ Hlth, Indianapolis, IN USA
[9] VA Connecticut Healthcare Syst, Neurol Serv, West Haven, CT USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT USA
[11] Yale Sch Med, Dept Internal Med, New Haven, CT USA
[12] VA Connecticut Healthcare Syst, Pain Res Informat & Multimorbid & Educ PRIME Ctr, West Haven, CT USA
[13] Indiana Univ Sch Med, Dept Neurol, Indianapolis, IN USA
[14] Regenstrief Inst Hlth Care, Indianapolis, IN USA
关键词
Stroke; National Institutes of Health Stroke Scale; Prediction; Electronic health record; MEDICARE BENEFICIARIES; 30-DAY MORTALITY; ISCHEMIC-STROKE; SCALE;
D O I
10.1016/j.jstrokecerebrovasdis.2023.107255
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Initial stroke severity is a potent modifier of stroke outcomes but this information is difficult to obtain from electronic health record (EHR) data. This limits the ability to risk-adjust for evaluations of stroke care and outcomes at a population level. The purpose of this analysis was to develop and validate a predictive model of initial stroke severity using EHR data elements.Methods: This observational cohort included individuals admitted to a US Department of Veterans Affairs hospital with an ischemic stroke. We extracted 65 independent predictors from the EHR. The primary analysis modeled mild (NIHSS score 0-3) versus moderate/severe stroke (NIHSS score & GE;4) using multiple logistic regression. Model validation included: (1) splitting the cohort into derivation (65%) and validation (35%) samples and (2) evaluating how the predicted stroke severity performed in regard to 30-day mortality risk stratification.Results: The sample comprised 15,346 individuals with ischemic stroke (n = 10,000 derivation; n = 5,346 validation). The final model included 15 variables and correctly classified 70.4% derivation sample patients and 69.4% validation sample patients. The areas under the curve (AUC) were 0.76 (derivation) and 0.76 (validation). In the validation sample, the model performed similarly to the observed NIHSS in terms of the association with 30-day mortality (AUC: 0.72 observed NIHSS, 0.70 predicted NIHSS).
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Development and validation of an automated delirium risk assessment system (Auto-DelRAS) implemented in the electronic health record system
    Moon, Kyoung-Ja
    Jin, Yinji
    Jin, Taixian
    Lee, Sun-Mi
    INTERNATIONAL JOURNAL OF NURSING STUDIES, 2018, 77 : 46 - 53
  • [42] Influenza epidemic surveillance and prediction based on electronic health record data from an out-of-hours general practitioner cooperative: model development and validation on 2003-2015 data
    Michiels, Barbara
    Van Kinh Nguyen
    Coenen, Samuel
    Ryckebosch, Philippe
    Bossuyt, Nathalie
    Hens, Niel
    BMC INFECTIOUS DISEASES, 2017, 17
  • [43] Development and validation of an interpretable machine learning model for predicting post-stroke epilepsy
    Yu, Yue
    Chen, Zhibin
    Yang, Yong
    Zhang, Jiajun
    Wang, Yan
    EPILEPSY RESEARCH, 2024, 205
  • [44] Development and validation of a nomogram model for predicting unfavorable functional outcomes in ischemic stroke patients after acute phase
    Yan, Chengjie
    Zheng, Yu
    Zhang, Xintong
    Gong, Chen
    Wen, Shibin
    Zhu, Yonggang
    Jiang, Yujuan
    Li, Xipeng
    Fu, Gaoyong
    Pan, Huaping
    Teng, Meiling
    Xia, Lingfeng
    Li, Jian
    Qian, Kun
    Lu, Xiao
    FRONTIERS IN AGING NEUROSCIENCE, 2023, 15
  • [45] Accuracy and generalizability of using automated methods for identifying adverse events from electronic health record data: a validation study protocol
    Christian M. Rochefort
    David L. Buckeridge
    Andréanne Tanguay
    Alain Biron
    Frédérick D’Aragon
    Shengrui Wang
    Benoit Gallix
    Louis Valiquette
    Li-Anne Audet
    Todd C. Lee
    Dev Jayaraman
    Bruno Petrucci
    Patricia Lefebvre
    BMC Health Services Research, 17
  • [46] A Case for Using Electronic Health Record Data in the Evaluation of Produce Prescription Programs
    Ridberg, Ronit A.
    Yaroch, Amy L.
    Nugent, Nadine Budd
    Shanks, Carmen Byker
    Seligman, Hilary
    JOURNAL OF PRIMARY CARE AND COMMUNITY HEALTH, 2022, 13
  • [47] A Novel Chronic Kidney Disease Phenotyping Algorithm Using Combined Electronic Health Record and Claims Data
    Mansour, Omar
    Paik, Julie M.
    Wyss, Richard
    Mastrorilli, Julianna M.
    Bessette, Lily Gui
    Lu, Zhigang
    Tsacogianis, Theodore
    Lin, Kueiyu Joshua
    CLINICAL EPIDEMIOLOGY, 2023, 15 : 299 - 307
  • [48] Prediction of obstetrical and fetal complications using automated electronic health record data
    Escobar, Gabriel J.
    Soltesz, Lauren
    Schuler, Alejandro
    Niki, Hamid
    Malenica, Ivana
    Lee, Catherine
    AMERICAN JOURNAL OF OBSTETRICS AND GYNECOLOGY, 2021, 224 (02) : 137 - 147
  • [49] Estimating clinical trial bleeding events using electronic health record data
    Eisenstein E.L.
    Wojdyla D.
    Kong D.F.
    Studies in Health Technology and Informatics, 2019, 257 : 92 - 97
  • [50] Predicting Patients' Intention to Use a Personal Health Record Using an Adapted Unified Theory of Acceptance and Use of Technology Model: Secondary Data Analysis
    Yousef, Consuela Cheriece
    Salgado, Teresa M.
    Farooq, Ali
    Burnett, Keisha
    McClelland, Laura E.
    Thomas, Abin
    Alenazi, Ahmed O.
    Abu Esba, Laila Carolina
    AlAzmi, Aeshah
    Alhameed, Abrar Fahad
    Hattan, Ahmed
    Elgadi, Sumaya
    Almekhloof, Saleh
    AlShammary, Mohammed A.
    Alanezi, Nazzal Abdullah
    Alhamdan, Hani Solaiman
    Khoshhal, Sahal
    DeShazo, Jonathan P.
    JMIR MEDICAL INFORMATICS, 2021, 9 (08)