Development and validation of a model predicting mild stroke severity on admission using electronic health record data

被引:2
|
作者
Waddell, Kimberly J. [1 ,2 ,3 ]
Myers, Laura J. [4 ,5 ,6 ]
Perkins, Anthony J. [4 ,6 ,7 ,8 ]
Sico, Jason J. [9 ,10 ,11 ,12 ]
Sexson, Ali [4 ]
Burrone, Laura [12 ]
Taylor, Stanley [4 ,6 ]
Koo, Brian [9 ,10 ,11 ,12 ]
Daggy, Joanne K. [4 ,6 ,7 ,8 ]
Bravata, Dawn M. [4 ,5 ,6 ,13 ,14 ]
机构
[1] Crescenz VA Med Ctr, VA Ctr Hlth Equ Res & Promot CHERP, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Phys Med & Rehabil, Philadelphia, PA USA
[3] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
[4] Richard L Roudebush VA Med Ctr, VA HSR &D Ctr Hlth Informat & Commun CH, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Med, Indianapolis, IN USA
[6] Expanding Expertise Ehlth Network Dev EXTEND, Dept Vet Affairs VA Hlth Serv Res & Dev HSR&D, Qual Enhancement Res Initiat QUERI, Indianapolis, IN USA
[7] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[8] Fairbanks Sch Publ Hlth, Indianapolis, IN USA
[9] VA Connecticut Healthcare Syst, Neurol Serv, West Haven, CT USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT USA
[11] Yale Sch Med, Dept Internal Med, New Haven, CT USA
[12] VA Connecticut Healthcare Syst, Pain Res Informat & Multimorbid & Educ PRIME Ctr, West Haven, CT USA
[13] Indiana Univ Sch Med, Dept Neurol, Indianapolis, IN USA
[14] Regenstrief Inst Hlth Care, Indianapolis, IN USA
关键词
Stroke; National Institutes of Health Stroke Scale; Prediction; Electronic health record; MEDICARE BENEFICIARIES; 30-DAY MORTALITY; ISCHEMIC-STROKE; SCALE;
D O I
10.1016/j.jstrokecerebrovasdis.2023.107255
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Initial stroke severity is a potent modifier of stroke outcomes but this information is difficult to obtain from electronic health record (EHR) data. This limits the ability to risk-adjust for evaluations of stroke care and outcomes at a population level. The purpose of this analysis was to develop and validate a predictive model of initial stroke severity using EHR data elements.Methods: This observational cohort included individuals admitted to a US Department of Veterans Affairs hospital with an ischemic stroke. We extracted 65 independent predictors from the EHR. The primary analysis modeled mild (NIHSS score 0-3) versus moderate/severe stroke (NIHSS score & GE;4) using multiple logistic regression. Model validation included: (1) splitting the cohort into derivation (65%) and validation (35%) samples and (2) evaluating how the predicted stroke severity performed in regard to 30-day mortality risk stratification.Results: The sample comprised 15,346 individuals with ischemic stroke (n = 10,000 derivation; n = 5,346 validation). The final model included 15 variables and correctly classified 70.4% derivation sample patients and 69.4% validation sample patients. The areas under the curve (AUC) were 0.76 (derivation) and 0.76 (validation). In the validation sample, the model performed similarly to the observed NIHSS in terms of the association with 30-day mortality (AUC: 0.72 observed NIHSS, 0.70 predicted NIHSS).
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Identifying future high healthcare utilization in patients with multimorbidity - development and internal validation of machine learning prediction models using electronic health record data
    Weil, Liann I.
    Zwerwer, Leslie R.
    Chu, Hung
    Verhoeff, Marlies
    Jeurissen, Patrick P. T.
    van Munster, Barbara C.
    HEALTH AND TECHNOLOGY, 2024, 14 (03) : 433 - 449
  • [32] Opportunities and challenges for biomarker discovery using electronic health record data
    Singhal, P.
    Tan, A. L. M.
    Drivas, T. G.
    Johnson, K. B.
    Ritchie, M.
    Beaulieu-Jones, B. K.
    TRENDS IN MOLECULAR MEDICINE, 2023, 29 (09) : 765 - 776
  • [33] Identifying future high healthcare utilization in patients with multimorbidity – development and internal validation of machine learning prediction models using electronic health record data
    Liann I. Weil
    Leslie R. Zwerwer
    Hung Chu
    Marlies Verhoeff
    Patrick P.T. Jeurissen
    Barbara C. van Munster
    Health and Technology, 2024, 14 : 433 - 449
  • [34] Electronic Health Record-Based Absolute Risk Prediction Model for Esophageal Cancer in the Chinese Population: Model Development and External Validation
    Han, Yuting
    Zhu, Xia
    Hu, Yizhen
    Yu, Canqing
    Guo, Yu
    Hang, Dong
    Pang, Yuanjie
    Pei, Pei
    Ma, Hongxia
    Sun, Dianjianyi
    Yang, Ling
    Chen, Yiping
    Du, Huaidong
    Yu, Min
    Chen, Junshi
    Chen, Zhengming
    Huo, Dezheng
    Jin, Guangfu
    Lv, Jun
    Hu, Zhibin
    Shen, Hongbing
    Li, Liming
    JMIR PUBLIC HEALTH AND SURVEILLANCE, 2023, 9 (01):
  • [35] Identifying transient ischemic attack (TIA) patients at high-risk of adverse outcomes: development and validation of an approach using electronic health record data
    Myers, Laura J.
    Perkins, Anthony J.
    Zhang, Ying
    Bravata, Dawn M.
    BMC NEUROLOGY, 2022, 22 (01)
  • [36] Influenza epidemic surveillance and prediction based on electronic health record data from an out-of-hours general practitioner cooperative: model development and validation on 2003–2015 data
    Barbara Michiels
    Van Kinh Nguyen
    Samuel Coenen
    Philippe Ryckebosch
    Nathalie Bossuyt
    Niel Hens
    BMC Infectious Diseases, 17
  • [37] Modeling patient-related workload in the emergency department using electronic health record data
    Wang, Xiaomei
    Blumenthal, H. Joseph
    Hoffman, Daniel
    Benda, Natalie
    Kim, Tracy
    Perry, Shawna
    Franklin, Ella S.
    Roth, Emilie M.
    Hettinger, A. Zachary
    Bisantz, Ann M.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 150
  • [38] A rational approach to legacy data validation when transitioning between electronic health record systems
    Pageler, Natalie M.
    G'Sell, Max Jacob Grazier
    Chandler, Warren
    Mailes, Emily
    Yang, Christine
    Longhurst, Christopher A.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2016, 23 (05) : 991 - 994
  • [39] Model-Based Algorithms for Detecting Peripheral Artery Disease Using Administrative Data From an Electronic Health Record Data System: Algorithm Development Study
    Weissler, Elizabeth Hope
    Lippmann, Steven J.
    Smerek, Michelle M.
    Ward, Rachael A.
    Kansal, Aman
    Brock, Adam
    Sullivan, Robert C.
    Long, Chandler
    Patel, Manesh R.
    Greiner, Melissa A.
    Hardy, N. Chantelle
    Curtis, Lesley H.
    Jones, W. Schuyler
    JMIR MEDICAL INFORMATICS, 2020, 8 (08)
  • [40] Development and validation of various phenotyping algorithms for Diabetes Mellitus using data from electronic health records
    Esteban, Santiago
    Rodriguez Tablado, Manuel
    Peper, Francisco E.
    Mahumud, Yamila S.
    Ricci, Ricardo I.
    Kopitowski, Karin S.
    Terrasa, Sergio A.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2017, 152 : 53 - 70