Development and validation of a model predicting mild stroke severity on admission using electronic health record data

被引:2
|
作者
Waddell, Kimberly J. [1 ,2 ,3 ]
Myers, Laura J. [4 ,5 ,6 ]
Perkins, Anthony J. [4 ,6 ,7 ,8 ]
Sico, Jason J. [9 ,10 ,11 ,12 ]
Sexson, Ali [4 ]
Burrone, Laura [12 ]
Taylor, Stanley [4 ,6 ]
Koo, Brian [9 ,10 ,11 ,12 ]
Daggy, Joanne K. [4 ,6 ,7 ,8 ]
Bravata, Dawn M. [4 ,5 ,6 ,13 ,14 ]
机构
[1] Crescenz VA Med Ctr, VA Ctr Hlth Equ Res & Promot CHERP, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Phys Med & Rehabil, Philadelphia, PA USA
[3] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
[4] Richard L Roudebush VA Med Ctr, VA HSR &D Ctr Hlth Informat & Commun CH, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Med, Indianapolis, IN USA
[6] Expanding Expertise Ehlth Network Dev EXTEND, Dept Vet Affairs VA Hlth Serv Res & Dev HSR&D, Qual Enhancement Res Initiat QUERI, Indianapolis, IN USA
[7] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[8] Fairbanks Sch Publ Hlth, Indianapolis, IN USA
[9] VA Connecticut Healthcare Syst, Neurol Serv, West Haven, CT USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT USA
[11] Yale Sch Med, Dept Internal Med, New Haven, CT USA
[12] VA Connecticut Healthcare Syst, Pain Res Informat & Multimorbid & Educ PRIME Ctr, West Haven, CT USA
[13] Indiana Univ Sch Med, Dept Neurol, Indianapolis, IN USA
[14] Regenstrief Inst Hlth Care, Indianapolis, IN USA
关键词
Stroke; National Institutes of Health Stroke Scale; Prediction; Electronic health record; MEDICARE BENEFICIARIES; 30-DAY MORTALITY; ISCHEMIC-STROKE; SCALE;
D O I
10.1016/j.jstrokecerebrovasdis.2023.107255
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Initial stroke severity is a potent modifier of stroke outcomes but this information is difficult to obtain from electronic health record (EHR) data. This limits the ability to risk-adjust for evaluations of stroke care and outcomes at a population level. The purpose of this analysis was to develop and validate a predictive model of initial stroke severity using EHR data elements.Methods: This observational cohort included individuals admitted to a US Department of Veterans Affairs hospital with an ischemic stroke. We extracted 65 independent predictors from the EHR. The primary analysis modeled mild (NIHSS score 0-3) versus moderate/severe stroke (NIHSS score & GE;4) using multiple logistic regression. Model validation included: (1) splitting the cohort into derivation (65%) and validation (35%) samples and (2) evaluating how the predicted stroke severity performed in regard to 30-day mortality risk stratification.Results: The sample comprised 15,346 individuals with ischemic stroke (n = 10,000 derivation; n = 5,346 validation). The final model included 15 variables and correctly classified 70.4% derivation sample patients and 69.4% validation sample patients. The areas under the curve (AUC) were 0.76 (derivation) and 0.76 (validation). In the validation sample, the model performed similarly to the observed NIHSS in terms of the association with 30-day mortality (AUC: 0.72 observed NIHSS, 0.70 predicted NIHSS).
引用
收藏
页数:6
相关论文
共 50 条
  • [22] Predicting Baby Feeding Method from Unstructured Electronic Health Record Data
    Rao, Ashwani
    Maiden, Kristin
    Carterette, Ben
    Ehrenthal, Deb
    PROCEEDINGS OF THE ACM SIXTH INTERNATIONAL WORKSHOP ON DATA AND TEXT MINING IN BIOMEDICAL INFORMATICS, 2012, : 29 - 33
  • [23] Using electronic health record systems to optimize admission decisions: The Creatinine case study
    Ben-Assuli, Ofir
    Shabtai, Itamar
    Leshno, Moshe
    HEALTH INFORMATICS JOURNAL, 2015, 21 (01) : 73 - 88
  • [24] Clinical Prediction Models for Hospital-Induced Delirium Using Structured and Unstructured Electronic Health Record Data: Protocol for a Development and Validation Study
    Ser, Sarah E.
    Shear, Kristen
    Snigurska, Urszula A.
    Prosperi, Mattia
    Wu, Yonghui
    Magoc, Tanja
    Bjarnadottir, Ragnhildur, I
    Lucero, Robert J.
    JMIR RESEARCH PROTOCOLS, 2023, 12
  • [25] Predicting Risk of Hypoglycemia in Patients With Type 2 Diabetes by Electronic Health Record-Based Machine Learning: Development and Validation
    Yang, Hao
    Li, Jiaxi
    Liu, Siru
    Yang, Xiaoling
    Liu, Jialin
    JMIR MEDICAL INFORMATICS, 2022, 10 (06)
  • [26] Improved Cardiovascular Risk Prediction Using Nonparametric Regression and Electronic Health Record Data
    Kennedy, Edward H.
    Wiitala, Wyndy L.
    Hayward, Rodney A.
    Sussman, Jeremy B.
    MEDICAL CARE, 2013, 51 (03) : 251 - 258
  • [27] Development and validation of a pulmonary function test data extraction tool for the US department of veterans affairs electronic health record
    Rabin, Alexander S.
    Weinstein, Julien B.
    Seelye, Sarah M.
    Whittington, Taylor N.
    Hogan, Cainnear K.
    Prescott, Hallie C.
    BMC RESEARCH NOTES, 2024, 17 (01)
  • [28] Targeted Development and Validation of Clinical Prediction Models in Secondary Care Settings: Opportunities and Challenges for Electronic Health Record Data
    van Maurik, I. S.
    Doodeman, H. J.
    Veeger-Nuijens, B. W.
    Mohringer, R. P. M.
    Sudion, D. R.
    Jongbloed, W.
    van Soelen, E.
    JMIR MEDICAL INFORMATICS, 2024, 12
  • [29] A Data-Driven Algorithm to Recommend Initial Clinical Workup for Outpatient Specialty Referral: Algorithm Development and Validation Using Electronic Health Record Data and Expert Surveys
    Ip, Wui
    Prahalad, Priya
    Palma, Jonathan
    Chen, Jonathan H.
    JMIR MEDICAL INFORMATICS, 2022, 10 (03)
  • [30] Development and validation of a continuous measure of patient condition using the Electronic Medical Record
    Rothman, Michael J.
    Rothman, Steven I.
    Beals, Joseph
    JOURNAL OF BIOMEDICAL INFORMATICS, 2013, 46 (05) : 837 - 848