Development and validation of a model predicting mild stroke severity on admission using electronic health record data

被引:2
|
作者
Waddell, Kimberly J. [1 ,2 ,3 ]
Myers, Laura J. [4 ,5 ,6 ]
Perkins, Anthony J. [4 ,6 ,7 ,8 ]
Sico, Jason J. [9 ,10 ,11 ,12 ]
Sexson, Ali [4 ]
Burrone, Laura [12 ]
Taylor, Stanley [4 ,6 ]
Koo, Brian [9 ,10 ,11 ,12 ]
Daggy, Joanne K. [4 ,6 ,7 ,8 ]
Bravata, Dawn M. [4 ,5 ,6 ,13 ,14 ]
机构
[1] Crescenz VA Med Ctr, VA Ctr Hlth Equ Res & Promot CHERP, Philadelphia, PA USA
[2] Univ Penn, Perelman Sch Med, Dept Phys Med & Rehabil, Philadelphia, PA USA
[3] Univ Penn, Leonard Davis Inst Hlth Econ, Philadelphia, PA USA
[4] Richard L Roudebush VA Med Ctr, VA HSR &D Ctr Hlth Informat & Commun CH, Indianapolis, IN USA
[5] Indiana Univ Sch Med, Dept Med, Indianapolis, IN USA
[6] Expanding Expertise Ehlth Network Dev EXTEND, Dept Vet Affairs VA Hlth Serv Res & Dev HSR&D, Qual Enhancement Res Initiat QUERI, Indianapolis, IN USA
[7] Indiana Univ Sch Med, Dept Biostat & Hlth Data Sci, Indianapolis, IN USA
[8] Fairbanks Sch Publ Hlth, Indianapolis, IN USA
[9] VA Connecticut Healthcare Syst, Neurol Serv, West Haven, CT USA
[10] Yale Sch Med, Dept Neurol, New Haven, CT USA
[11] Yale Sch Med, Dept Internal Med, New Haven, CT USA
[12] VA Connecticut Healthcare Syst, Pain Res Informat & Multimorbid & Educ PRIME Ctr, West Haven, CT USA
[13] Indiana Univ Sch Med, Dept Neurol, Indianapolis, IN USA
[14] Regenstrief Inst Hlth Care, Indianapolis, IN USA
关键词
Stroke; National Institutes of Health Stroke Scale; Prediction; Electronic health record; MEDICARE BENEFICIARIES; 30-DAY MORTALITY; ISCHEMIC-STROKE; SCALE;
D O I
10.1016/j.jstrokecerebrovasdis.2023.107255
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Objective: Initial stroke severity is a potent modifier of stroke outcomes but this information is difficult to obtain from electronic health record (EHR) data. This limits the ability to risk-adjust for evaluations of stroke care and outcomes at a population level. The purpose of this analysis was to develop and validate a predictive model of initial stroke severity using EHR data elements.Methods: This observational cohort included individuals admitted to a US Department of Veterans Affairs hospital with an ischemic stroke. We extracted 65 independent predictors from the EHR. The primary analysis modeled mild (NIHSS score 0-3) versus moderate/severe stroke (NIHSS score & GE;4) using multiple logistic regression. Model validation included: (1) splitting the cohort into derivation (65%) and validation (35%) samples and (2) evaluating how the predicted stroke severity performed in regard to 30-day mortality risk stratification.Results: The sample comprised 15,346 individuals with ischemic stroke (n = 10,000 derivation; n = 5,346 validation). The final model included 15 variables and correctly classified 70.4% derivation sample patients and 69.4% validation sample patients. The areas under the curve (AUC) were 0.76 (derivation) and 0.76 (validation). In the validation sample, the model performed similarly to the observed NIHSS in terms of the association with 30-day mortality (AUC: 0.72 observed NIHSS, 0.70 predicted NIHSS).
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Assessing stroke severity using electronic health record data: a machine learning approach
    Kogan, Emily
    Twyman, Kathryn
    Heap, Jesse
    Milentijevic, Dejan
    Lin, Jennifer H.
    Alberts, Mark
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2020, 20 (01)
  • [2] Predicting post-stroke cognitive impairment using electronic health record data
    Ashburner, Jeffrey M.
    Chang, Yuchiao
    Porneala, Bianca
    Singh, Sanjula D.
    Yechoor, Nirupama
    Rosand, Jonathan M.
    Singer, Daniel E.
    Anderson, Christopher D.
    Atlas, Steven J.
    INTERNATIONAL JOURNAL OF STROKE, 2024, 19 (08) : 898 - 906
  • [3] Development and validation of an electronic frailty index using routine primary care electronic health record data
    Clegg, Andrew
    Bates, Chris
    Young, John
    Ryan, Ronan
    Nichols, Linda
    Teale, Elizabeth Ann
    Mohammed, Mohammed A.
    Parry, John
    Marshall, Tom
    AGE AND AGEING, 2016, 45 (03) : 353 - 360
  • [4] Development and Validation of a Prediction Model for Atrial Fibrillation Using Electronic Health Records
    Hulme, Olivia L.
    Khurshid, Shaan
    Weng, Lu-Chen
    Anderson, Christopher D.
    Wang, Elizabeth Y.
    Ashburner, Jeffrey M.
    Ko, Darae
    McManus, David D.
    Benjamin, Emelia J.
    Ellinor, Patrick T.
    Trinquart, Ludovic
    Lubitz, Steven A.
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2019, 5 (11) : 1331 - 1341
  • [5] Predicting involuntary admission following inpatient psychiatric treatment using machine learning trained on electronic health record data
    Perfalk, Erik
    Damgaard, Jakob Grohn
    Bernstorff, Martin
    Hansen, Lasse
    Danielsen, Andreas Aalkjaer
    Ostergaard, Soren Dinesen
    PSYCHOLOGICAL MEDICINE, 2024, 54 (15) : 4348 - 4361
  • [6] Development and external validation of a diagnostic model for biopsy-proven acute interstitial nephritis using electronic health record data
    Moledina, Dennis G.
    Eadon, Michael T.
    Calderon, Frida
    Yamamoto, Yu
    Shaw, Melissa
    Perazella, Mark A.
    Simonov, Michael
    Luciano, Randy
    Schwantes-An, Tae-Hwi
    Moeckel, Gilbert
    Kashgarian, Michael
    Kuperman, Michael
    Obeid, Wassim
    Cantley, Lloyd G.
    Parikh, Chirag R.
    Wilson, F. Perry
    NEPHROLOGY DIALYSIS TRANSPLANTATION, 2022, 37 (11) : 2214 - 2222
  • [7] Development and validation of automated electronic health record data reuse for a multidisciplinary quality dashboard
    Ebbers, Tom
    Takes, Robert P.
    Honings, Jimmie
    Smeele, Ludi E.
    Kool, Rudolf B.
    van den Broek, Guido B.
    DIGITAL HEALTH, 2023, 9
  • [8] Validation of Risk Scores for Predicting Atrial Fibrillation Detected After Stroke Based on an Electronic Medical Record Algorithm: A Registry-Claims-Electronic Medical Record Linked Data Study
    Hsieh, Cheng-Yang
    Kao, Hsuan-Min
    Sung, Kuan-Lin
    Sposato, Luciano A.
    Sung, Sheng-Feng
    Lin, Swu-Jane
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [9] External Validation of Postpartum Hemorrhage Prediction Models Using Electronic Health Record Data
    Meyer, Sean R.
    Carver, Alissa
    Joo, Hyeon
    Venkatesh, Kartik K.
    Jelovsek, J. Eric
    Klumpner, Thomas T.
    Singh, Karandeep
    AMERICAN JOURNAL OF PERINATOLOGY, 2024, 41 (05) : 598 - 605
  • [10] Development of An Individualized Risk Prediction Model for COVID-19 Using Electronic Health Record Data
    Mamidi, Tarun Karthik Kumar
    Tran-Nguyen, Thi K.
    Melvin, Ryan L.
    Worthey, Elizabeth A.
    FRONTIERS IN BIG DATA, 2021, 4