Dark matter and gravitational waves from a dark big bang

被引:27
作者
Freese, Katherine [1 ,2 ,3 ,4 ]
Winkler, Martin Wolfgang [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[2] Univ Stockholm, Oskar Klein Ctr Cosmoparticle Phys, S-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, Nordita, S-10691 Stockholm, Sweden
[4] Stockholm Univ, S-10691 Stockholm, Sweden
基金
瑞典研究理事会;
关键词
ENERGY COSMIC-RAYS; DENSITY PERTURBATIONS; EXTENDED INFLATION; VACUUM BUBBLES; FALSE VACUUM; FIELD-THEORY; RADIATION; GENERATION; SEARCH; LIMITS;
D O I
10.1103/PhysRevD.107.083522
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The hot big bang is often considered as the origin of all matter and radiation in the Universe. Primordial nucleosynthesis provides strong evidence that the early Universe contained a hot plasma of photons and baryons with a temperature T > MeV. However, the earliest probes of dark matter originate from much later times around the epoch of structure formation. In this work we describe a scenario in which dark matter (and possibly dark radiation) can be formed around or even after primordial nucleosynthesis in a second big bang, which we dub the "dark big bang." The latter occurs through a phase transition in the dark sector that transforms dark vacuum energy into a hot dark plasma of particles; in this paper we focus on a first-order phase transition for the dark big bang. The correct dark matter abundance can be set by dark matter cannibalism or by pair annihilation within the dark sector followed by a thermal freeze-out. Alternatively ultraheavy "dark-zilla" dark matter can originate directly from bubble collisions during the dark big bang. We will show that the dark big bang is consistent with constraints from structure formation and the cosmic microwave background if it occurred when the Universe was less than one month old, corresponding to a temperature in the visible sector above OokeV thorn . While the dark matter evades direct and indirect detection, the dark big bang gives rise to striking gravity wave signatures to be tested at pulsar timing array experiments. Furthermore, the dark big bang allows for realizations of self-interacting and/or warm dark matter, which suggest exciting discovery potential in future small-scale structure observations.
引用
收藏
页数:31
相关论文
共 188 条
[1]  
Abazajian K, 2019, Arxiv, DOI arXiv:1907.04473
[2]   Dark matter and dark radiation [J].
Ackerman, Lotty ;
Buckley, Matthew R. ;
Carroll, Sean M. ;
Kamionkowski, Marc .
PHYSICAL REVIEW D, 2009, 79 (02)
[3]   DOUBLE-FIELD INFLATION [J].
ADAMS, FC ;
FREESE, K .
PHYSICAL REVIEW D, 1991, 43 (02) :353-361
[4]   GENERAL-SOLUTIONS FOR TUNNELING OF SCALAR FIELDS WITH QUARTIC POTENTIALS [J].
ADAMS, FC .
PHYSICAL REVIEW D, 1993, 48 (06) :2800-2805
[5]   NANOGrav results and dark first order phase transitions [J].
Addazi, Andrea ;
Cai, Yi-Fu ;
Gan, Qingyu ;
Marciano, Antonino ;
Zeng, Kaiqiang .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (09)
[6]   Gravitational waves from dark first order phase transitions and dark photons [J].
Addazi, Andrea ;
Marciano, Antonino .
CHINESE PHYSICS C, 2018, 42 (02)
[7]   Limiting first-order phase transitions in dark gauge sectors from gravitational waves experiments [J].
Addazi, Andrea .
MODERN PHYSICS LETTERS A, 2017, 32 (08)
[8]  
Adhikari S., 2022, arXiv
[9]   Chilly dark sectors and asymmetric reheating [J].
Adshead, Peter ;
Cui, Yanou ;
Shelton, Jessie .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (06)
[10]   Planck 2018 results: VI. Cosmological parameters [J].
Aghanim, N. ;
Akrami, Y. ;
Ashdown, M. ;
Aumont, J. ;
Baccigalupi, C. ;
Ballardini, M. ;
Banday, A. J. ;
Barreiro, R. B. ;
Bartolo, N. ;
Basak, S. ;
Battye, R. ;
Benabed, K. ;
Bernard, J. -P. ;
Bersanelli, M. ;
Bielewicz, P. ;
Bock, J. J. ;
Bond, J. R. ;
Borrill, J. ;
Bouchet, F. R. ;
Boulanger, F. ;
Bucher, M. ;
Burigana, C. ;
Butler, R. C. ;
Calabrese, E. ;
Cardoso, J. -F. ;
Carron, J. ;
Challinor, A. ;
Chiang, H. C. ;
Chluba, J. ;
Colombo, L. P. L. ;
Combet, C. ;
Contreras, D. ;
Crill, B. P. ;
Cuttaia, F. ;
de Bernardis, P. ;
de Zotti, G. ;
Delabrouille, J. ;
Delouis, J. -M. ;
Di Valentino, E. ;
Diego, J. M. ;
Dore, O. ;
Douspis, M. ;
Ducout, A. ;
Dupac, X. ;
Dusini, S. ;
Efstathiou, G. ;
Elsner, F. ;
Ensslin, T. A. ;
Eriksen, H. K. ;
Fantaye, Y. .
ASTRONOMY & ASTROPHYSICS, 2020, 641