Noisy-Intermediate-Scale Quantum Electromagnetic Transients Program

被引:6
作者
Zhou, Yifan [1 ]
Zhang, Peng [1 ]
Feng, Fei [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
EMTP; Computers; Noise measurement; Voltage; Qubit; Quantum circuit; Power system dynamics; Quantum electromagnetic transients program (QEMTP); quantum shifted frequency analysis (QSFA); quantum computing; variational quantum linear solver; noisy-intermediate-scale quantum (NISQ) era;
D O I
10.1109/TPWRS.2022.3172655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum-empowered electromagnetic transients program (QEMTP) is a promising paradigm for tackling EMTP's computational burdens. Nevertheless, no existing studies truly achieve a practical and scalable QEMTP operable on today's noisy-intermediate-scale quantum (NISQ) computers. The strong reliance on noise-free and fault-tolerant quantum devices-which appears to be decades away- hinder practical applications of current QEMTP methods. This paper devises a NISQ-QEMTP methodology which for the first time transitions the QEMTP operations from ideal, noise-free quantum simulators to real, noisy quantum computers. The main contributions lie in: (1) design of shallow-depth QEMTP quantum circuits for mitigating noises on NISQ quantum devices; (2) practical QEMTP linear solvers incorporating executable quantum state preparation and measurements for nodal voltage computations; (3) a noise-resilient QEMTP algorithm leveraging quantum resources logarithmically scaled with power system dimension; (4) a quantum shifted frequency analysis (QSFA) for accelerating QEMTP by exploiting dynamic phasor simulations with larger time steps; (5) a systematical analysis on QEMTP's performance under various noisy quantum environments. Extensive experiments systematically verify the accuracy, efficacy, universality and noise-resilience of QEMTP on both noise-free simulators and IBM real quantum computers.
引用
收藏
页码:1558 / 1571
页数:14
相关论文
共 29 条
[11]   Step-by-Step Eigenvalue Analysis With EMTP discrete-time Solutions [J].
Hollman, Jorge Ariel ;
Marti, Jose Ramon .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2010, 25 (03) :1220-1231
[12]  
IEEE PES AMPS DSAS Test Feeder Working Group, IEEE DISTRIBUTION TE
[13]  
IEEE PES Distribution test feeders, IEEE EUROPEAN LOW VO
[14]   Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets [J].
Kandala, Abhinav ;
Mezzacapo, Antonio ;
Temme, Kristan ;
Takita, Maika ;
Brink, Markus ;
Chow, Jerry M. ;
Gambetta, Jay M. .
NATURE, 2017, 549 (7671) :242-246
[15]  
Kaye P., 2007, INTRO QUANTUM COMPUT
[16]  
Kingma DP, 2014, ADV NEUR IN, V27
[17]   Quantum circuit learning [J].
Mitarai, K. ;
Negoro, M. ;
Kitagawa, M. ;
Fujii, K. .
PHYSICAL REVIEW A, 2018, 98 (03)
[18]   Latency techniques for time-domain power system transients simulation [J].
Moreira, FA ;
Martí, JR .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (01) :246-253
[19]  
Nielsen M., 2000, QUANTUM COMPUTATION, V54, P60
[20]  
Nielsen M.A., 2010, Quantum Computation and Quantum Information, DOI [10.1017/cbo9780511976667, 10.1017/CBO9780511976667]