Noisy-Intermediate-Scale Quantum Electromagnetic Transients Program

被引:6
作者
Zhou, Yifan [1 ]
Zhang, Peng [1 ]
Feng, Fei [1 ]
机构
[1] SUNY Stony Brook, Dept Elect & Comp Engn, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
EMTP; Computers; Noise measurement; Voltage; Qubit; Quantum circuit; Power system dynamics; Quantum electromagnetic transients program (QEMTP); quantum shifted frequency analysis (QSFA); quantum computing; variational quantum linear solver; noisy-intermediate-scale quantum (NISQ) era;
D O I
10.1109/TPWRS.2022.3172655
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum-empowered electromagnetic transients program (QEMTP) is a promising paradigm for tackling EMTP's computational burdens. Nevertheless, no existing studies truly achieve a practical and scalable QEMTP operable on today's noisy-intermediate-scale quantum (NISQ) computers. The strong reliance on noise-free and fault-tolerant quantum devices-which appears to be decades away- hinder practical applications of current QEMTP methods. This paper devises a NISQ-QEMTP methodology which for the first time transitions the QEMTP operations from ideal, noise-free quantum simulators to real, noisy quantum computers. The main contributions lie in: (1) design of shallow-depth QEMTP quantum circuits for mitigating noises on NISQ quantum devices; (2) practical QEMTP linear solvers incorporating executable quantum state preparation and measurements for nodal voltage computations; (3) a noise-resilient QEMTP algorithm leveraging quantum resources logarithmically scaled with power system dimension; (4) a quantum shifted frequency analysis (QSFA) for accelerating QEMTP by exploiting dynamic phasor simulations with larger time steps; (5) a systematical analysis on QEMTP's performance under various noisy quantum environments. Extensive experiments systematically verify the accuracy, efficacy, universality and noise-resilience of QEMTP on both noise-free simulators and IBM real quantum computers.
引用
收藏
页码:1558 / 1571
页数:14
相关论文
共 29 条
[1]  
Abraham H.AduOffei, 2019, Qiskit: An open-source framework for quantum computing
[2]   A Polynomial Quantum Algorithm for Approximating the Jones Polynomial [J].
Aharonov, Dorit ;
Jones, Vaughan ;
Landau, Zeph .
ALGORITHMICA, 2009, 55 (03) :395-421
[3]  
Bravo-Prieto C., 2020, Bull Am Phys Soc, V65
[4]   Second law of quantum complexity [J].
Brown, Adam R. ;
Susskind, Leonard .
PHYSICAL REVIEW D, 2018, 97 (08)
[5]   Variational quantum algorithms [J].
Cerezo, M. ;
Arrasmith, Andrew ;
Babbush, Ryan ;
Benjamin, Simon C. ;
Endo, Suguru ;
Fujii, Keisuke ;
McClean, Jarrod R. ;
Mitarai, Kosuke ;
Yuan, Xiao ;
Cincio, Lukasz ;
Coles, Patrick J. .
NATURE REVIEWS PHYSICS, 2021, 3 (09) :625-644
[6]   Exploiting Dynamic Quantum Circuits in a Quantum Algorithm with Superconducting Qubits [J].
Corcoles, A. D. ;
Takita, Maika ;
Inoue, Ken ;
Lekuch, Scott ;
Minev, Zlatko K. ;
Chow, Jerry M. ;
Gambetta, Jay M. .
PHYSICAL REVIEW LETTERS, 2021, 127 (10)
[7]   Validating quantum computers using randomized model circuits [J].
Cross, Andrew W. ;
Bishop, Lev S. ;
Sheldon, Sarah ;
Nation, Paul D. ;
Gambetta, Jay M. .
PHYSICAL REVIEW A, 2019, 100 (03)
[8]  
Dommel H.W., 1996, EMTP THEORY BOOK
[9]   Quantum Algorithm for Linear Systems of Equations [J].
Harrow, Aram W. ;
Hassidim, Avinatan ;
Lloyd, Seth .
PHYSICAL REVIEW LETTERS, 2009, 103 (15)
[10]  
Hidary J.D., 2019, QUANTUM COMPUTING AP, DOI 10.1007/978-3-030-23922-0