Coexistence of volatile and nonvolatile memristive effects in phase-separated La0.5Ca0.5MnO3-based devices

被引:1
作者
Ramirez, G. A. [1 ,2 ]
Acevedo, W. Roman [1 ,2 ]
Rengifo, M. [3 ,4 ,5 ]
Nunez, J. M. [2 ,3 ,4 ,5 ]
Aguirre, M. H. [3 ,4 ,5 ]
Briatico, J. [6 ,7 ]
Rubi, D. [1 ,2 ]
机构
[1] CNEA, Dept Micro & Nanotecnol, Gral Paz 1499, RA-1650 San Martin, Buenos Aires, Argentina
[2] CONICET CNEA, Inst Nanociencia & Nanotecnol INN, San Carlos De Bariloche, Buenos Aires, Argentina
[3] Univ Zaragoza, Dept Fis Mat Condensada, Pedro Cerbuna 12, Zaragoza 50009, Spain
[4] Univ Zaragoza, Lab Microscopias Avanzadas LMA, Inst Nanociencia Aragon INA, C Mariano Esquillor S-N, Zaragoza 50018, Spain
[5] Univ Zaragoza, Inst Ciencias Mat Aragon ICMA, Zaragoza 50009, Spain
[6] Unite Mixte Phys CNRS Thales, F-91767 Saclay, France
[7] Univ Paris Saclay, F-91767 Saclay, France
基金
欧盟地平线“2020”;
关键词
CHARGE ORDER; LA1-XCAXMNO3; RELAXATION; TRANSITION; BRAIN;
D O I
10.1063/5.0132047
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this work, we have investigated the coexistence of volatile and nonvolatile memristive effects in epitaxial phase-separated La0.5Ca0.5MnO3 thin films. At low temperatures (50 K), we observed volatile resistive changes arising from self-heating effects in the vicinity of a metal-to-insulator transition. At higher temperatures (140 and 200 K), we measured a combination of volatile and nonvolatile effects arising from the synergy between self-heating effects and ferromagnetic-metallic phase growth induced by an external electrical field. The results reported here add phase separated manganites to the list of materials that can electrically mimic, on the same device, the behavior of both neurons and synapses, a feature that might be useful for the development of neuromorphic computing hardware.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Colossal resistive relaxation effects in a Pr0.67Ca0.33MnO3 single crystal
    Anane, A
    Renard, JP
    Reversat, L
    Dupas, C
    Veillet, P
    Viret, M
    Pinsard, L
    Revcolevschi, A
    [J]. PHYSICAL REVIEW B, 1999, 59 (01): : 77 - 80
  • [2] Designing reversible multi-level resistance states in a half-doped manganite
    Banik, Sanjib
    Das, Kalipada
    Pradhan, Kalpataru
    Das, Indranil
    [J]. EPL, 2021, 133 (01)
  • [3] Scaled, Ferroelectric Memristive Synapse for Back-End-of-Line Integration with Neuromorphic Hardware
    Begon-Lours, Laura
    Halter, Mattia
    Puglisi, Francesco Maria
    Benatti, Lorenzo
    Falcone, Donato Francesco
    Popoff, Youri
    Davila Pineda, Diana
    Sousa, Marilyne
    Offrein, Bert Jan
    [J]. ADVANCED ELECTRONIC MATERIALS, 2022, 8 (06)
  • [4] Volatile and Non-Volatile Switching in Cu-SiO2 Programmable Metallization Cells
    Chen, W.
    Barnaby, H. J.
    Kozicki, M. N.
    [J]. IEEE ELECTRON DEVICE LETTERS, 2016, 37 (05) : 580 - 583
  • [5] Electric field-driven resistive switching in magnetoresistive La0.5Ca0.5MnO3 thin films
    Duhalde, S
    Villafuerte, M
    Juárez, G
    Heluani, SP
    [J]. PHYSICA B-CONDENSED MATTER, 2004, 354 (1-4) : 11 - 15
  • [6] Key Role of Oxygen-Vacancy Electromigration in the Memristive Response of Ferroelectric Devices
    Ferreyra, C.
    Rengifo, M.
    Sanchez, M. J.
    Everhardt, A. S.
    Noheda, B.
    Rubi, D.
    [J]. PHYSICAL REVIEW APPLIED, 2020, 14 (04):
  • [7] Current-induced effects in La5/8-yPryCa3/8MnO3 (y=0.35) single crystals
    Garbarino, G
    Monteverde, M
    Acha, C
    Levy, P
    Quintero, M
    Koo, TY
    Cheong, SW
    [J]. PHYSICA B-CONDENSED MATTER, 2004, 354 (1-4) : 16 - 19
  • [8] Modeling electronic transport mechanisms in metal-manganite memristive interfaces
    Gomez-Marlasca, F.
    Ghenzi, N.
    Leyva, A. G.
    Albornoz, C.
    Rubi, D.
    Stoliar, P.
    Levy, P.
    [J]. JOURNAL OF APPLIED PHYSICS, 2013, 113 (14)
  • [9] Neuromorphic spintronics
    Grollier, J.
    Querlioz, D.
    Camsari, K. Y.
    Everschor-Sitte, K.
    Fukami, S.
    Stiles, M. D.
    [J]. NATURE ELECTRONICS, 2020, 3 (07) : 360 - 370
  • [10] Ielmini D, 2016, RESISTIVE SWITCHING: FROM FUNDAMENTALS OF NANOIONIC REDOX PROCESSES TO MEMRISTIVE DEVICE APPLICATIONS, P1