Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer's disease using EEG technology

被引:51
作者
Jiao, Bin [1 ,2 ,3 ,4 ,5 ]
Li, Rihui [6 ,7 ]
Zhou, Hui [1 ]
Qing, Kunqiang [7 ]
Liu, Hui [1 ]
Pan, Hefu [7 ]
Lei, Yanqin [7 ]
Fu, Wenjin [7 ]
Wang, Xiaoan [7 ]
Xiao, Xuewen [1 ]
Liu, Xixi [1 ]
Yang, Qijie [1 ]
Liao, Xinxin [8 ]
Zhou, Yafang [8 ]
Fang, Liangjuan [1 ]
Dong, Yanbin [7 ]
Yang, Yuanhao [9 ]
Jiang, Haiyan [1 ]
Huang, Sha [1 ]
Shen, Lu [1 ,2 ,3 ,4 ,5 ,10 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Neurol, Changsha, Peoples R China
[2] Cent South Univ, Natl Clin Res Ctr Geriatr Disorders, Changsha, Peoples R China
[3] Cent South Univ, Engn Res Ctr Hunan Prov Cognit Impairment Disorder, Changsha, Peoples R China
[4] Hunan Int Sci & Technol Cooperat Base Neurodegener, Changsha, Peoples R China
[5] Cent South Univ, Key Lab Hunan Prov Neurodegenerat Disorders, Changsha, Peoples R China
[6] Stanford Univ, Ctr Interdisciplinary Brain Sci Res, Sch Med, Dept Psychiat & Behav Sci, Stanford, CA USA
[7] Brainup Inst Sci & Technol, Chongqing, Peoples R China
[8] Cent South Univ, Xiangya Hosp, Dept Geriatr, Changsha, Peoples R China
[9] Univ Queensland, Mater Res Inst, Woolloongabba, Qld 4102, Australia
[10] Key Lab Organ Injury Aging & Regenerat Med Hunan P, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Mild cognitive impairment; Alzheimer's disease; Electroencephalography; Diagnosis; Prediction; Biomarker; ASSOCIATION WORKGROUPS; NATIONAL INSTITUTE; RECOMMENDATIONS; ELECTROENCEPHALOGRAPHY; SYNCHRONIZATION; GUIDELINES; DEMENTIA; CRITERIA; RHYTHMS;
D O I
10.1186/s13195-023-01181-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundElectroencephalogram (EEG) has emerged as a non-invasive tool to detect the aberrant neuronal activity related to different stages of Alzheimer's disease (AD). However, the effectiveness of EEG in the precise diagnosis and assessment of AD and its preclinical stage, amnestic mild cognitive impairment (MCI), has yet to be fully elucidated. In this study, we aimed to identify key EEG biomarkers that are effective in distinguishing patients at the early stage of AD and monitoring the progression of AD.MethodsA total of 890 participants, including 189 patients with MCI, 330 patients with AD, 125 patients with other dementias (frontotemporal dementia, dementia with Lewy bodies, and vascular cognitive impairment), and 246 healthy controls (HC) were enrolled. Biomarkers were extracted from resting-state EEG recordings for a three-level classification of HC, MCI, and AD. The optimal EEG biomarkers were then identified based on the classification performance. Random forest regression was used to train a series of models by combining participants' EEG biomarkers, demographic information (i.e., sex, age), CSF biomarkers, and APOE phenotype for assessing the disease progression and individual's cognitive function.ResultsThe identified EEG biomarkers achieved over 70% accuracy in the three-level classification of HC, MCI, and AD. Among all six groups, the most prominent effects of AD-linked neurodegeneration on EEG metrics were localized at parieto-occipital regions. In the cross-validation predictive analyses, the optimal EEG features were more effective than the CSF + APOE biomarkers in predicting the age of onset and disease course, whereas the combination of EEG + CSF + APOE measures achieved the best performance for all targets of prediction.ConclusionsOur study indicates that EEG can be used as a useful screening tool for the diagnosis and disease progression evaluation of MCI and AD.
引用
收藏
页数:14
相关论文
共 51 条
  • [41] Diagnostic Criteria for Vascular Cognitive Disorders A VASCOG Statement
    Sachdev, Perminder
    Kalaria, Raj
    O'Brien, John
    Skoog, Ingmar
    Alladi, Suvarna
    Black, Sandra E.
    Blacker, Deborah
    Blazer, Dan G.
    Chen, Christopher
    Chui, Helena
    Ganguli, Mary
    Jellinger, Kurt
    Jeste, Dilip V.
    Pasquier, Florence
    Paulsen, Jane
    Prins, Niels
    Rockwood, Kenneth
    Roman, Gustavo
    Scheltens, Philip
    [J]. ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2014, 28 (03) : 206 - 218
  • [42] Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment
    Scheff, S. W.
    Price, D. A.
    Schmitt, F. A.
    DeKosky, S. T.
    Mufson, E. J.
    [J]. NEUROLOGY, 2007, 68 (18) : 1501 - 1508
  • [43] Alzheimer's disease
    Scheltens, Philip
    De Strooper, Bart
    Kivipelto, Miia
    Holstege, Henne
    Chetelat, Gael
    Teunissen, Charlotte E.
    Cummings, Jeffrey
    van der Flier, Wiesje M.
    [J]. LANCET, 2021, 397 (10284) : 1577 - 1590
  • [44] Quantitative EEG as a biomarker in mild cognitive impairment with Lewy bodies
    Schumacher, Julia
    Taylor, John-Paul
    Hamilton, Calum A.
    Firbank, Michael
    Cromarty, Ruth A.
    Donaghy, Paul C.
    Roberts, Gemma
    Allan, Louise
    Lloyd, Jim
    Durcan, Rory
    Barnett, Nicola
    O'Brien, John T.
    Thomas, Alan J.
    [J]. ALZHEIMERS RESEARCH & THERAPY, 2020, 12 (01)
  • [45] Decreased Global EEG Synchronization in Amyloid Positive Mild Cognitive Impairment and Alzheimer's Disease Patients-Relationship to APOE ε4
    Smailovic, Una
    Johansson, Charlotte
    Koenig, Thomas
    Kareholt, Ingemar
    Graff, Caroline
    Jelic, Vesna
    [J]. BRAIN SCIENCES, 2021, 11 (10)
  • [46] Quantitative EEG power and synchronization correlate with Alzheimer's disease CSF biomarkers
    Smailovic, Una
    Koenig, Thomas
    Kareholt, Ingemar
    Andersson, Thomas
    Kramberger, Milica Gregoric
    Winblad, Bengt
    Jelic, Vesna
    [J]. NEUROBIOLOGY OF AGING, 2018, 63 : 88 - 95
  • [47] EEG synchronization in mild cognitive impairment and Alzheimer's disease
    Stam, CJ
    van der Made, Y
    Pijnenburg, YAL
    Scheltens, P
    [J]. ACTA NEUROLOGICA SCANDINAVICA, 2003, 108 (02): : 90 - 96
  • [48] Biomarker-based prognosis for people with mild cognitive impairment (ABIDE): a modelling study
    van Maurik, Ingrid S.
    Vos, Stephanie J.
    Bos, Isabelle
    Bouwman, Femke H.
    Teunissen, Charlotte E.
    Scheitens, Philip
    Barkhof, Frederik
    Frolich, Lutz
    Kornhuber, Johannes
    Wiftfang, Jens
    Maier, Wolfgang
    Peters, Oliver
    ROther, Eckart
    Nobili, Flavio
    Frisoni, Giovanni B.
    Spiru, Luiza
    Freund-Levi, Yvonne
    Wallin, Asa K.
    Hampel, Harald
    Soininen, Hilkka
    Tsolaki, Magda
    Verhey, Frans
    Kloszewska, Iwona
    Mecocci, Patrizia
    Vellas, Bruno
    Lovestone, Simon
    Gailuzzi, Samantha
    Herukka, Sanna-Kaisa
    Santana, Isabel
    Baldeiras, Ines
    de Mendonca, Alexandre
    Silva, Dina
    Chetelat, Gael
    Egret, Stephanie
    Palmqvist, Sebastian
    Hansson, Oskar
    Visser, Pieter Jelle
    Berkhof, Johannes
    van der Flier, Wiesje M.
    [J]. LANCET NEUROLOGY, 2019, 18 (11) : 1034 - 1044
  • [49] Classification of Alzheimer's Disease with Respect to Physiological Aging with Innovative EEG Biomarkers in a Machine Learning Implementation
    Vecchio, Fabrizio
    Miraglia, Francesca
    Alu, Francesca
    Menna, Matteo
    Judica, Elda
    Cotelli, Maria
    Rossini, Paolo Maria
    [J]. JOURNAL OF ALZHEIMERS DISEASE, 2020, 75 (04) : 1253 - 1261
  • [50] Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: Electroencephalographic connectivity and graph theory combined with apolipoprotein E
    Vecchio, Fabrizio
    Miraglia, Francesca
    Iberite, Francesco
    Lacidogna, Giordano
    Guglielmi, Valeria
    Marra, Camillo
    Pasqualetti, Patrizio
    Tiziano, Francesco Danilo
    Rossini, Paolo Maria
    [J]. ANNALS OF NEUROLOGY, 2018, 84 (02) : 302 - 314