Neural biomarker diagnosis and prediction to mild cognitive impairment and Alzheimer's disease using EEG technology

被引:51
作者
Jiao, Bin [1 ,2 ,3 ,4 ,5 ]
Li, Rihui [6 ,7 ]
Zhou, Hui [1 ]
Qing, Kunqiang [7 ]
Liu, Hui [1 ]
Pan, Hefu [7 ]
Lei, Yanqin [7 ]
Fu, Wenjin [7 ]
Wang, Xiaoan [7 ]
Xiao, Xuewen [1 ]
Liu, Xixi [1 ]
Yang, Qijie [1 ]
Liao, Xinxin [8 ]
Zhou, Yafang [8 ]
Fang, Liangjuan [1 ]
Dong, Yanbin [7 ]
Yang, Yuanhao [9 ]
Jiang, Haiyan [1 ]
Huang, Sha [1 ]
Shen, Lu [1 ,2 ,3 ,4 ,5 ,10 ]
机构
[1] Cent South Univ, Xiangya Hosp, Dept Neurol, Changsha, Peoples R China
[2] Cent South Univ, Natl Clin Res Ctr Geriatr Disorders, Changsha, Peoples R China
[3] Cent South Univ, Engn Res Ctr Hunan Prov Cognit Impairment Disorder, Changsha, Peoples R China
[4] Hunan Int Sci & Technol Cooperat Base Neurodegener, Changsha, Peoples R China
[5] Cent South Univ, Key Lab Hunan Prov Neurodegenerat Disorders, Changsha, Peoples R China
[6] Stanford Univ, Ctr Interdisciplinary Brain Sci Res, Sch Med, Dept Psychiat & Behav Sci, Stanford, CA USA
[7] Brainup Inst Sci & Technol, Chongqing, Peoples R China
[8] Cent South Univ, Xiangya Hosp, Dept Geriatr, Changsha, Peoples R China
[9] Univ Queensland, Mater Res Inst, Woolloongabba, Qld 4102, Australia
[10] Key Lab Organ Injury Aging & Regenerat Med Hunan P, Changsha, Peoples R China
基金
中国国家自然科学基金;
关键词
Mild cognitive impairment; Alzheimer's disease; Electroencephalography; Diagnosis; Prediction; Biomarker; ASSOCIATION WORKGROUPS; NATIONAL INSTITUTE; RECOMMENDATIONS; ELECTROENCEPHALOGRAPHY; SYNCHRONIZATION; GUIDELINES; DEMENTIA; CRITERIA; RHYTHMS;
D O I
10.1186/s13195-023-01181-1
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BackgroundElectroencephalogram (EEG) has emerged as a non-invasive tool to detect the aberrant neuronal activity related to different stages of Alzheimer's disease (AD). However, the effectiveness of EEG in the precise diagnosis and assessment of AD and its preclinical stage, amnestic mild cognitive impairment (MCI), has yet to be fully elucidated. In this study, we aimed to identify key EEG biomarkers that are effective in distinguishing patients at the early stage of AD and monitoring the progression of AD.MethodsA total of 890 participants, including 189 patients with MCI, 330 patients with AD, 125 patients with other dementias (frontotemporal dementia, dementia with Lewy bodies, and vascular cognitive impairment), and 246 healthy controls (HC) were enrolled. Biomarkers were extracted from resting-state EEG recordings for a three-level classification of HC, MCI, and AD. The optimal EEG biomarkers were then identified based on the classification performance. Random forest regression was used to train a series of models by combining participants' EEG biomarkers, demographic information (i.e., sex, age), CSF biomarkers, and APOE phenotype for assessing the disease progression and individual's cognitive function.ResultsThe identified EEG biomarkers achieved over 70% accuracy in the three-level classification of HC, MCI, and AD. Among all six groups, the most prominent effects of AD-linked neurodegeneration on EEG metrics were localized at parieto-occipital regions. In the cross-validation predictive analyses, the optimal EEG features were more effective than the CSF + APOE biomarkers in predicting the age of onset and disease course, whereas the combination of EEG + CSF + APOE measures achieved the best performance for all targets of prediction.ConclusionsOur study indicates that EEG can be used as a useful screening tool for the diagnosis and disease progression evaluation of MCI and AD.
引用
收藏
页数:14
相关论文
共 51 条
  • [1] The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease
    Albert, Marilyn S.
    DeKosky, Steven T.
    Dickson, Dennis
    Dubois, Bruno
    Feldman, Howard H.
    Fox, Nick C.
    Gamst, Anthony
    Holtzman, David M.
    Jagust, William J.
    Petersen, Ronald C.
    Snyder, Peter J.
    Carrillo, Maria C.
    Thies, Bill
    Phelps, Creighton H.
    [J]. ALZHEIMERS & DEMENTIA, 2011, 7 (03) : 270 - 279
  • [2] Sources of cortical rhythms change as a function of cognitive impairment in pathological aging: a multicenter study
    Babiloni, C
    Binetti, G
    Cassetta, E
    Dal Forno, G
    Del Percio, C
    Ferreri, F
    Ferri, R
    Frisoni, G
    Hirata, K
    Lanuzza, B
    Miniussi, C
    Moretti, DV
    Nobili, F
    Rodriguez, G
    Romani, GL
    Salinari, S
    Rossini, PM
    [J]. CLINICAL NEUROPHYSIOLOGY, 2006, 117 (02) : 252 - 268
  • [3] Measures of resting state EEG rhythms for clinical trials in Alzheimer's disease: Recommendations of an expert panel
    Babiloni, Claudio
    Arakaki, Xianghong
    Azami, Hamed
    Bennys, Karim
    Blinowska, Katarzyna
    Bonanni, Laura
    Bujan, Ana
    Carrillo, Maria C.
    Cichocki, Andrzej
    de Frutos-Lucas, Jaisalmer
    Del Percio, Claudio
    Dubois, Bruno
    Edelmayer, Rebecca
    Egan, Gary
    Epelbaum, Stephane
    Escudero, Javier
    Evans, Alan
    Farina, Francesca
    Fargo, Keith
    Fernandez, Alberto
    Ferri, Raffaele
    Frisoni, Giovanni
    Hampel, Harald
    Harrington, Michael G.
    Jelic, Vesna
    Jeong, Jaeseung
    Jiang, Yang
    Kaminski, Maciej
    Kavcic, Voyko
    Kilborn, Kerry
    Kumar, Sanjeev
    Lam, Alice
    Lim, Lew
    Lizio, Roberta
    Lopez, David
    Lopez, Susanna
    Lucey, Brendan
    Maestu, Fernando
    McGeown, William J.
    McKeith, Ian
    Moretti, Davide Vito
    Nobili, Flavio
    Noce, Giuseppe
    Olichney, John
    Onofrj, Marco
    Osorio, Ricardo
    Parra-Rodriguez, Mario
    Rajji, Tarek
    Ritter, Petra
    Soricelli, Andrea
    [J]. ALZHEIMERS & DEMENTIA, 2021, 17 (09) : 1528 - 1553
  • [4] EEG measures for clinical research in major vascular cognitive impairment: recommendations by an expert panel
    Babiloni, Claudio
    Arakaki, Xianhong
    Bonanni, Laura
    Bujan, Ana
    Carrillo, Maria C.
    Del Percio, Claudio
    Edelmayer, Rebecca M.
    Egan, Gary
    Elahh, Fanny M.
    Evans, Alan
    Ferri, Raffaele
    Frisoni, Giovanni B.
    Guntekin, Bahar
    Hainsworth, Atticus
    Hampel, Harald
    Jelic, Vesna
    Jeong, Jaesieung
    Kim, Doh Kwan
    Kramberger, Milica
    Kumar, Sanjev
    Lizio, Roberta
    Nobili, Flavio
    Noce, Giuseppe
    Puce, Aina
    Ritter, Petra
    Smit, Dirk J. A.
    Soricelli, Andrea
    Teipel, Stefan
    Tucci, Fedeico
    Sachdev, Perminder
    Valdes-Sosa, Mitchell
    Valdes-Sosa, Pedro
    Vergallo, Andrea
    Yener, Gorinev
    [J]. NEUROBIOLOGY OF AGING, 2021, 103 : 78 - 97
  • [5] International Federation of Clinical Neurophysiology (IFCN) - EEG research workgroup: Recommendations on frequency and topographic analysis of resting state EEG rhythms. Part 1: Applications in clinical research studies
    Babiloni, Claudio
    Barry, Robert J.
    Basar, Erol
    Blinowska, Katarzyna J.
    Cichocki, Andrzej
    Drinkenburg, Wilhelmus H. I. M.
    Klimesch, Wolfgang
    Knight, Robert T.
    da Silva, Fernando Lopes
    Nunez, Paul
    Oostenveld, Robert
    Jeong, Jaeseung
    Pascual-Marqui, Roberto
    Valdes-Sosa, Pedro
    Hallett, Mark
    [J]. CLINICAL NEUROPHYSIOLOGY, 2020, 131 (01) : 285 - 307
  • [6] Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease
    Babiloni, Claudio
    Frisoni, Giovanni B.
    Pievani, Michela
    Vecchio, Fabrizio
    Lizio, Roberta
    Buttiglione, Maura
    Geroldi, Cristina
    Fracassi, Claudia
    Eusebi, Fabrizio
    Ferri, Raffaele
    Rossini, Paolo M.
    [J]. NEUROIMAGE, 2009, 44 (01) : 123 - 135
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] Clinical and cognitive trajectories in cognitively healthy elderly individuals with suspected non-Alzheimer's disease pathophysiology (SNAP) or Alzheimer's disease pathology: a longitudinal study
    Burnham, Samantha C.
    Bourgeat, Pierrick
    Dore, Vincent
    Savage, Greg
    Brown, Belinda
    Laws, Simon
    Maruff, Paul
    Salvado, Olivier
    Ames, David
    Martins, Ralph N.
    Masters, Colin L.
    Rowe, Christopher C.
    Villemagne, Victor L.
    [J]. LANCET NEUROLOGY, 2016, 15 (10) : 1044 - 1053
  • [9] Systematic Review on Resting-State EEG for Alzheimer's Disease Diagnosis and Progression Assessment
    Cassani, Raymundo
    Estarellas, Mar
    San-Martin, Rodrigo
    Fraga, Francisco J.
    Falk, Tiago H.
    [J]. DISEASE MARKERS, 2018, 2018
  • [10] Towards automated electroencephalography-based Alzheimer's disease diagnosis using portable low-density devices
    Cassani, Raymundo
    Falk, Tiago H.
    Fraga, Francisco J.
    Cecchi, Marco
    Moore, Dennis K.
    Anghinah, Renato
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 33 : 261 - 271