Green batteries for clean skies: Sustainability assessment of lithium-sulfur all-solid-state batteries for electric aircraft

被引:12
|
作者
Barke, Alexander [1 ,6 ]
Cistjakov, Walter [2 ,6 ]
Steckermeier, Dominik [3 ,6 ]
Thies, Christian [1 ,6 ]
Popien, Jan-Linus [1 ]
Michalowski, Peter [3 ,6 ]
Pinheiro Melo, Sofia [4 ,6 ]
Cerdas, Felipe [4 ,6 ]
Herrmann, Christoph [4 ,6 ]
Krewer, Ulrike [5 ,6 ]
Kwade, Arno [3 ,6 ]
Spengler, Thomas S. [1 ,6 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, Inst Automot Management & Ind Prod, Muhlenpfordtstr 23, D-38106 Braunschweig, Germany
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Energy & Proc Syst Engn, Braunschweig, Germany
[3] Tech Univ Carolo Wilhelmina Braunschweig, Inst Particle Technol, Braunschweig, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Machine Tools & Prod Technol, Braunschweig, Germany
[5] Karlsruhe Inst Technol, Inst Appl Mat Electrochem Technol, Karlsruhe, Germany
[6] Tech Univ Carolo Wilhelmina Braunschweig, Cluster Excellence SE2A Sustainable & Energy Effic, Braunschweig, Germany
关键词
all-solid-state battery; electric aircraft; industrial ecology; life cycle sustainability assessment; prospective sustainability assessment; sustainable development goals; LIFE-CYCLE ASSESSMENT; ION; CHALLENGES; PROSPECTS; IMPACTS;
D O I
10.1111/jiec.13345
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of novel battery technologies in short-haul electric aircraft can support the aviation sector in achieving its goals for a sustainable development. However, the production of the batteries is often associated with adverse environmental and socio-economic impacts, potentially leading to burden shifting. Therefore, this paper investigates alternative technologies for lithium-sulfur all-solid-state batteries (LiS-ASSBs) in terms of their contribution to the sustainable development goals (SDGs). We propose a new approach that builds on life cycle sustainability assessment and links the relevant impact categories to the related SDGs. The approach is applied to analyze four LiS-ASSB configurations with different solid electrolytes, designed for maximum specific energy using an electrochemical model. They are compared to a lithium-sulfur battery with a liquid electrolyte as a benchmark. The results of our cradle-to-gate analysis reveal that the new LiS-ASSB technologies generally have a positive contribution to SDG achievement. However, the battery configuration with the best technical characteristics is not the most promising in terms of SDG achievement. Especially variations from the technically optimal cathode thickness can improve the SDG contribution. A sensitivity analysis shows that the results are rather robust against the weighting factors within the SDG quantification method.
引用
收藏
页码:795 / 810
页数:16
相关论文
共 50 条
  • [41] Improved state of charge estimation for lithium-sulfur batteries
    Propp, Karsten
    Auger, Daniel J.
    Fotouhi, Abbas
    Marinescu, Monica
    Knap, Vaclav
    Longo, Stefano
    JOURNAL OF ENERGY STORAGE, 2019, 26
  • [42] Life Cycle Assessment and resource analysis of all-solid-state batteries
    Troy, Stefanie
    Schreiber, Andrea
    Reppert, Thorsten
    Gehrke, Hans-Gregot
    Finsterbusch, Martin
    Uhlenbruck, Sven
    Stenzel, Peter
    APPLIED ENERGY, 2016, 169 : 757 - 767
  • [43] Metastable Materials for All-Solid-State Batteries
    Sakuda, Atsushi
    Hayashi, Akitoshi
    Tatsumisago, Masahiro
    ELECTROCHEMISTRY, 2019, 87 (05) : 247 - 250
  • [44] 4-V flexible all-solid-state lithium polymer batteries
    Chen, Zhen
    Kim, Guk-Tae
    Wang, Zeli
    Bresser, Dominic
    Qin, Bingsheng
    Geiger, Dorin
    Kaiser, Ute
    Wang, Xuesen
    Shen, Ze Xiang
    Passerini, Stefano
    NANO ENERGY, 2019, 64
  • [45] Emerging trends and innovations in all-solid-state lithium batteries: A comprehensive review
    Pourzolfaghar, Hamed
    Wang, Po-Yuan
    Jiang, Xin-Yu
    Kositsarakhom, Supapitch
    Jirasupcharoen, Wasitpol
    Suwantri, Chinatip
    Jyothi, Divya
    Prabhakaran, Keerthana
    Li, Yuan-Yao
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [47] Computational Investigation of the Interfacial Stability of Lithium Chloride Solid Electrolytes in All-Solid-State Lithium Batteries
    Chun, Gin Hyung
    Shim, Joon Hyung
    Yu, Seungho
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) : 1241 - 1248
  • [48] Protecting lithium metal anode in all-solid-state batteries with a composite electrolyte
    Wei, Wen-Qing
    Liu, Bing-Qiang
    Gan, Yi-Qiang
    Ma, Hai-Jian
    Cui, Da-Wei
    RARE METALS, 2021, 40 (02) : 409 - 416
  • [49] A PDE Model Simplification Framework for All-Solid-State Batteries
    Li, Yang
    Wik, Torsten
    Huang, Yicun
    Zou, Changfu
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 1775 - 1781
  • [50] Fluorine-Doped Antiperovskite Electrolyte for All-Solid-State Lithium-Ion Batteries
    Li, Yutao
    Zhou, Weidong
    Xin, Sen
    Li, Shuai
    Zhu, Jinlong
    Lu, Xujie
    Cui, Zhiming
    Jia, Quanxi
    Zhou, Jianshi
    Zhao, Yusheng
    Goodenough, John B.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (34) : 9965 - 9968