SIGMA leverages protein structural information to predict the pathogenicity of missense variants

被引:2
|
作者
Zhao, Hengqiang [1 ,2 ]
Du, Huakang [1 ,2 ]
Zhao, Sen [1 ,2 ]
Chen, Zefu [1 ,2 ]
Li, Yaqi [1 ,2 ]
Xu, Kexin [1 ,2 ]
Liu, Bowen [1 ,2 ]
Cheng, Xi [1 ,2 ]
Wen, Wen [1 ,2 ]
Li, Guozhuang [1 ,2 ]
Chen, Guilin [1 ,2 ]
Zhao, Zhengye [1 ,2 ]
Qiu, Guixing [1 ,2 ,3 ]
Liu, Pengfei [6 ,7 ]
Zhang, Terry Jianguo [1 ,2 ,3 ]
Wu, Zhihong [1 ,2 ,3 ,4 ,5 ]
Wu, Nan [1 ,2 ,3 ]
机构
[1] Peking Union Med Coll & Chinese Acad Med Sci, Dept Orthoped Surg, State Key Lab Complex Severe & Rare Dis, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[2] Beijing Key Lab Genet Res Skeletal Deform, Beijing 100730, Peoples R China
[3] Chinese Acad Med Sci, Key Lab Big Data Spinal Deform, Beijing 100730, Peoples R China
[4] Peking Union Med Coll & Chinese Acad Med Sci, Peking Union Med Coll Hosp, Med Res Ctr, Beijing 100730, Peoples R China
[5] Chinese Acad Med Sci, Med Res Ctr Orthoped, Beijing 100730, Peoples R China
[6] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[7] Baylor Genet, Houston, TX 77021 USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SEQUENCE; DATABASE; IMPACT;
D O I
10.1016/j.crmeth.2023.100687
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure -informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUC = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top -tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUC = 0.966). To facilitate the application of SIGMA, we precomputed SIGMA scores for over 48 million possible missense variants across 3,454 disease -associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure -based approach to evaluating the pathogenicity of missense variants.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] HPMPdb: A machine learning-ready database of protein molecular phenotypes associated to human missense variants
    Raimondi, Daniele
    Codice, Francesco
    Orlando, Gabriele
    Schymkowitz, Joost
    Rousseau, Frederic
    Moreau, Yves
    CURRENT RESEARCH IN STRUCTURAL BIOLOGY, 2022, 4 : 167 - 174
  • [42] Functional and Structural Features of Disease-Related Protein Variants
    Savojardo, Castrense
    Babbi, Giulia
    Martelli, Pier Luigi
    Casadio, Rita
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (07):
  • [43] LDLR missense variants disturb structural conformation and LDLR activity in T-lymphocytes of Familial hypercholesterolemia patients
    Almendros Barbosa, Thais Kristini
    Crespo Hirata, Rosario Dominguez
    Ferreira, Glaucio Monteiro
    Borges, Jessica Bassani
    de Oliveira, Victor Fernandes
    Gorjao, Renata
    da Silva Marcal, Elisangela Rodrigues
    Goncalves, Rodrigo Marques
    Faludi, Andre Arpad
    Costa de Freitas, Renata Caroline
    Dagli-Hernandez, Carolina
    Bortolin, Raul Hernandes
    Bastos, Gisele Medeiros
    Pithon-Curi, Tania Cristina
    Nader, Helena Bonciani
    Hirata, Mario Hiroyuki
    GENE, 2023, 853
  • [44] Unlocking the Door for Precision Medicine in Rare Conditions: Structural and Functional Consequences of Missense ACVR1 Variants
    Nagar, Garima
    Gupta, Shradheya R. R.
    Rustagi, Vanshika
    Pramod, Ravindran Kumar
    Singh, Archana
    Pahuja, Monika
    Singh, Indrakant Kumar
    OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY, 2024, 28 (10) : 526 - 536
  • [45] New approaches to predict the effect of co-occurring variants on protein characteristics
    Holcomb, David
    Hamasaki-Katagiri, Nobuko
    Laurie, Kyle
    Katneni, Upendra
    Kames, Jacob
    Alexaki, Aikaterini
    Bar, Haim
    Kimchi-Sarfaty, Chava
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (08) : 1502 - 1511
  • [46] Integrating population variation and protein structural analysis to improve clinical interpretation of missense variation: application to the WD40 domain
    Laskowski, Roman A.
    Tyagi, Nidhi
    Johnson, Diana
    Joss, Shelagh
    Kinning, Esther
    McWilliam, Catherine
    Splitt, Miranda
    Thornton, Janet M.
    Firth, Helen V.
    Wright, Caroline F.
    HUMAN MOLECULAR GENETICS, 2016, 25 (05) : 927 - 935
  • [47] Structure-based pathogenicity relationship identifier for predicting effects of single missense variants and discovery of higher-order cancer susceptibility clusters of mutations
    Wang, Boshen
    Lei, Xue
    Tian, Wei
    Perez-Rathke, Alan
    Tseng, Yan-Yuan
    Liang, Jie
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (04)
  • [48] Docking-based modeling of protein-protein interfaces for extensive structural and functional characterization of missense mutations
    Barradas-Bautista, Didier
    Fernandez-Recio, Juan
    PLOS ONE, 2017, 12 (08):
  • [49] A computational model to predict the structural and functional consequences of missense mutations in O6-methylguanine DNA methyltransferase
    Kumar, D. Thirumal
    Mendonca, Enid
    Christy, J. Priyadharshini
    Doss, C. George Priya
    Zayed, Hatem
    DNA REPAIR, 2019, 115 : 351 - 369
  • [50] Pigeon paramyxovirus type 1 variants with polybasic F protein cleavage site but strikingly different pathogenicity
    Heiden, Sandra
    Grund, Christian
    Hoeper, Dirk
    Mettenleiter, Thomas C.
    Roemer-Oberdoerfer, Angela
    VIRUS GENES, 2014, 49 (03) : 502 - 506