SIGMA leverages protein structural information to predict the pathogenicity of missense variants

被引:2
|
作者
Zhao, Hengqiang [1 ,2 ]
Du, Huakang [1 ,2 ]
Zhao, Sen [1 ,2 ]
Chen, Zefu [1 ,2 ]
Li, Yaqi [1 ,2 ]
Xu, Kexin [1 ,2 ]
Liu, Bowen [1 ,2 ]
Cheng, Xi [1 ,2 ]
Wen, Wen [1 ,2 ]
Li, Guozhuang [1 ,2 ]
Chen, Guilin [1 ,2 ]
Zhao, Zhengye [1 ,2 ]
Qiu, Guixing [1 ,2 ,3 ]
Liu, Pengfei [6 ,7 ]
Zhang, Terry Jianguo [1 ,2 ,3 ]
Wu, Zhihong [1 ,2 ,3 ,4 ,5 ]
Wu, Nan [1 ,2 ,3 ]
机构
[1] Peking Union Med Coll & Chinese Acad Med Sci, Dept Orthoped Surg, State Key Lab Complex Severe & Rare Dis, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[2] Beijing Key Lab Genet Res Skeletal Deform, Beijing 100730, Peoples R China
[3] Chinese Acad Med Sci, Key Lab Big Data Spinal Deform, Beijing 100730, Peoples R China
[4] Peking Union Med Coll & Chinese Acad Med Sci, Peking Union Med Coll Hosp, Med Res Ctr, Beijing 100730, Peoples R China
[5] Chinese Acad Med Sci, Med Res Ctr Orthoped, Beijing 100730, Peoples R China
[6] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[7] Baylor Genet, Houston, TX 77021 USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SEQUENCE; DATABASE; IMPACT;
D O I
10.1016/j.crmeth.2023.100687
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure -informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUC = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top -tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUC = 0.966). To facilitate the application of SIGMA, we precomputed SIGMA scores for over 48 million possible missense variants across 3,454 disease -associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure -based approach to evaluating the pathogenicity of missense variants.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] The importance of accessory protein variants in the pathogenicity of SARS-CoV-2
    Sk., Sarif Hassan A.
    Pabitra, Pal Choudhury B.
    Guy, W. Dayhoff Ii C.
    Aljabali, Alaa A. A.
    Uhal, Bruce D.
    Lundstrom, Kenneth
    Rezaei, Nima
    Pizzol, Damiano
    Adadi, Parise
    Lal, Amos
    Soares, Antonio
    El-Aziz, Tarek Mohamed Abd
    Brufsky, Adam M.
    Azad, Gajendra Kumar
    Sherchan, Samendra P.
    Baetas-da-Cruz, Wagner
    Takayama, Kazuo
    Serrano-Aroca, Angel
    Chauhan, Gaurav
    Palu, Giorgio
    Mishra, Yogendra Kumar
    Barh, Debmalya
    Silva, Raner Jo Prime Se Santana
    Andrade, Bruno Silva
    Azevedo, Vasco
    Goes-Neto, Aristoteles
    Bazan, Nicolas G.
    Redwan, Elrashdy M.
    Tambuwala, Murtaza
    Uversky, Vladimir N.
    ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2022, 717
  • [32] Comprehensive Analysis of Constraint on the Spatial Distribution of Missense Variants in Human Protein Structures
    Sivley, R. Michael
    Dou, Xiaoyi
    Meiler, Jens
    Bush, William S.
    Capra, John A.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2018, 102 (03) : 415 - 426
  • [33] Improving the clinical interpretation of missense variants in X linked genes using structural analysis
    Sallah, Shalaw Rassul
    Ellingford, Jamie M.
    Sergouniotis, Panagiotis, I
    Ramsden, Simon C.
    Lench, Nicholas
    Lovell, Simon C.
    Black, Graeme C.
    JOURNAL OF MEDICAL GENETICS, 2022, 59 (04) : 385 - 392
  • [34] Incorporating Secondary Structural Features into Sequence Information for Predicting Protein Structural Class
    Liao, Bo
    Peng, Ting
    Chen, Haowen
    Lin, Yaping
    PROTEIN AND PEPTIDE LETTERS, 2013, 20 (10) : 1079 - 1087
  • [35] MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains
    Wiel, Laurens
    Baakman, Coos
    Gilissen, Daan
    Veltman, Joris A.
    Vriend, Gerrit
    Gilissen, Christian
    HUMAN MUTATION, 2019, 40 (08) : 1030 - 1038
  • [36] In silico profiling and structural insights of missense mutations in RET protein kinase domain by molecular dynamics and docking approach
    Doss, C. George Priya
    Rajith, B.
    Chakraboty, Chiranjib
    Balaji, V.
    Magesh, R.
    Gowthami, B.
    Menon, Sneha
    Swati, M.
    Trivedi, Manjari
    Paul, Jasmine
    Vasan, Richa
    Das, Maitreya
    MOLECULAR BIOSYSTEMS, 2014, 10 (03) : 421 - 436
  • [37] Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants
    Iqbal, Sumaiya
    Perez-Palma, Eduardo
    Jespersen, Jakob B.
    May, Patrick
    Hoksza, David
    Heyne, Henrike O.
    Ahmed, Shehab S.
    Rifat, Zaara T.
    Rahman, M. Sohel
    Lage, Kasper
    Palotie, Aarno
    Cottrell, Jeffrey R.
    Wagner, Florence F.
    Daly, Mark J.
    Campbell, Arthur J.
    Lal, Dennis
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (45) : 28201 - 28211
  • [38] Computational analysis of missense variants in MMP2 gene linked with Winchester syndrome and Nodulosis-Arthropathy-Osteolysis reveals structural shift in protein-protein and protein-ligand complexes
    Rangasamy, Nithya
    Kumar, Nachimuthu Senthil
    Santhy, K. S.
    META GENE, 2021, 29
  • [39] Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques
    Liu, Jing
    Chen, Yingying
    Huang, Kai
    Guan, Xiao
    BIOMOLECULES, 2024, 14 (09)
  • [40] The structural effects of mutations can aid in differential phenotype prediction of beta-myosin heavy chain (Myosin-7) missense variants
    Al-Numair, Nouf S.
    Lopes, Luis
    Syrris, Petros
    Monserrat, Lorenzo
    Elliott, Perry
    Martin, Andrew C. R.
    BIOINFORMATICS, 2016, 32 (19) : 2947 - 2955