SIGMA leverages protein structural information to predict the pathogenicity of missense variants

被引:2
|
作者
Zhao, Hengqiang [1 ,2 ]
Du, Huakang [1 ,2 ]
Zhao, Sen [1 ,2 ]
Chen, Zefu [1 ,2 ]
Li, Yaqi [1 ,2 ]
Xu, Kexin [1 ,2 ]
Liu, Bowen [1 ,2 ]
Cheng, Xi [1 ,2 ]
Wen, Wen [1 ,2 ]
Li, Guozhuang [1 ,2 ]
Chen, Guilin [1 ,2 ]
Zhao, Zhengye [1 ,2 ]
Qiu, Guixing [1 ,2 ,3 ]
Liu, Pengfei [6 ,7 ]
Zhang, Terry Jianguo [1 ,2 ,3 ]
Wu, Zhihong [1 ,2 ,3 ,4 ,5 ]
Wu, Nan [1 ,2 ,3 ]
机构
[1] Peking Union Med Coll & Chinese Acad Med Sci, Dept Orthoped Surg, State Key Lab Complex Severe & Rare Dis, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[2] Beijing Key Lab Genet Res Skeletal Deform, Beijing 100730, Peoples R China
[3] Chinese Acad Med Sci, Key Lab Big Data Spinal Deform, Beijing 100730, Peoples R China
[4] Peking Union Med Coll & Chinese Acad Med Sci, Peking Union Med Coll Hosp, Med Res Ctr, Beijing 100730, Peoples R China
[5] Chinese Acad Med Sci, Med Res Ctr Orthoped, Beijing 100730, Peoples R China
[6] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[7] Baylor Genet, Houston, TX 77021 USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SEQUENCE; DATABASE; IMPACT;
D O I
10.1016/j.crmeth.2023.100687
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure -informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUC = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top -tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUC = 0.966). To facilitate the application of SIGMA, we precomputed SIGMA scores for over 48 million possible missense variants across 3,454 disease -associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure -based approach to evaluating the pathogenicity of missense variants.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Pathogenic missense protein variants affect different functional pathways and proteomic features than healthy population variants
    Laddach, Anna
    Ng, Joseph Chi Fung
    Fraternali, Franca
    PLOS BIOLOGY, 2021, 19 (04)
  • [22] Deep generative models of LDLR protein structure to predict variant pathogenicity
    James, Jose K.
    Norland, Kristjan
    Johar, Angad S.
    Kullo, Iftikhar J.
    JOURNAL OF LIPID RESEARCH, 2023, 64 (12)
  • [23] Protein structure-based evaluation of missense variants: Resources, challenges and future directions
    David, Alessia
    Sternberg, Michael J. E.
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2023, 80
  • [24] SVFX: a machine learning framework to quantify the pathogenicity of structural variants
    Kumar, Sushant
    Harmanci, Arif
    Vytheeswaran, Jagath
    Gerstein, Mark B.
    GENOME BIOLOGY, 2020, 21 (01) : 274
  • [25] Enhancing missense variant pathogenicity prediction with protein language models using VariPred
    Lin, Weining
    Wells, Jude
    Wang, Zeyuan
    Orengo, Christine
    Martin, Andrew C. R.
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [26] Evaluating novel in silico tools for accurate pathogenicity classification in epilepsy-associated genetic missense variants
    Montanucci, Ludovica
    Bruenger, Tobias
    Bosselmann, Christian M.
    Ivaniuk, Alina
    Perez-Palma, Eduardo
    Lhatoo, Samden
    Leu, Costin
    Lal, Dennis
    EPILEPSIA, 2024, 65 (12) : 3655 - 3663
  • [27] The Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two Types of Circularity
    Grimm, Dominik G.
    Azencott, Chloe-Agathe
    Aicheler, Fabian
    Gieraths, Udo
    MacArthur, Daniel G.
    Samocha, Kaitlin E.
    Cooper, David N.
    Stenson, Peter D.
    Daly, Mark J.
    Smoller, Jordan W.
    Duncan, Laramie E.
    Borgwardt, Karsten M.
    HUMAN MUTATION, 2015, 36 (05) : 513 - 523
  • [28] AI-derived comparative assessment of the performance of pathogenicity prediction tools on missense variants of breast cancer genes
    Ahmad, Rahaf M.
    Ali, Bassam R.
    Al-Jasmi, Fatma
    Al Dhaheri, Noura
    Al Turki, Saeed
    Kizhakkedath, Praseetha
    Mohamad, Mohd Saberi
    HUMAN GENOMICS, 2024, 18 (01)
  • [29] A yeast based assay establishes the pathogenicity of novel missense ACTA2 variants associated with aortic aneurysms
    Calderan, Cristina
    Sorrentino, Ugo
    Persano, Luca
    Trevisson, Eva
    Sartori, Geppo
    Salviati, Leonardo
    Desbats, Maria Andrea
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 (07) : 804 - 812
  • [30] Analysis of missense variants in the human genome reveals widespread gene-specific clustering and improves prediction of pathogenicity
    Quinodoz, Mathieu
    Peter, Virginie G.
    Cisarova, Katarina
    Royer-Bertrand, Beryl
    Stenson, Peter D.
    Cooper, David N.
    Unger, Sheila
    Superti-Furga, Andrea
    Rivolta, Carlo
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (03) : 457 - 470