共 50 条
SIGMA leverages protein structural information to predict the pathogenicity of missense variants
被引:2
|作者:
Zhao, Hengqiang
[1
,2
]
Du, Huakang
[1
,2
]
Zhao, Sen
[1
,2
]
Chen, Zefu
[1
,2
]
Li, Yaqi
[1
,2
]
Xu, Kexin
[1
,2
]
Liu, Bowen
[1
,2
]
Cheng, Xi
[1
,2
]
Wen, Wen
[1
,2
]
Li, Guozhuang
[1
,2
]
Chen, Guilin
[1
,2
]
Zhao, Zhengye
[1
,2
]
Qiu, Guixing
[1
,2
,3
]
Liu, Pengfei
[6
,7
]
Zhang, Terry Jianguo
[1
,2
,3
]
Wu, Zhihong
[1
,2
,3
,4
,5
]
Wu, Nan
[1
,2
,3
]
机构:
[1] Peking Union Med Coll & Chinese Acad Med Sci, Dept Orthoped Surg, State Key Lab Complex Severe & Rare Dis, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[2] Beijing Key Lab Genet Res Skeletal Deform, Beijing 100730, Peoples R China
[3] Chinese Acad Med Sci, Key Lab Big Data Spinal Deform, Beijing 100730, Peoples R China
[4] Peking Union Med Coll & Chinese Acad Med Sci, Peking Union Med Coll Hosp, Med Res Ctr, Beijing 100730, Peoples R China
[5] Chinese Acad Med Sci, Med Res Ctr Orthoped, Beijing 100730, Peoples R China
[6] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[7] Baylor Genet, Houston, TX 77021 USA
来源:
CELL REPORTS METHODS
|
2024年
/
4卷
/
01期
基金:
中国国家自然科学基金;
北京市自然科学基金;
关键词:
SEQUENCE;
DATABASE;
IMPACT;
D O I:
10.1016/j.crmeth.2023.100687
中图分类号:
Q5 [生物化学];
学科分类号:
071010 ;
081704 ;
摘要:
Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure -informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUC = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top -tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUC = 0.966). To facilitate the application of SIGMA, we precomputed SIGMA scores for over 48 million possible missense variants across 3,454 disease -associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure -based approach to evaluating the pathogenicity of missense variants.
引用
收藏
页数:15
相关论文