SIGMA leverages protein structural information to predict the pathogenicity of missense variants

被引:2
|
作者
Zhao, Hengqiang [1 ,2 ]
Du, Huakang [1 ,2 ]
Zhao, Sen [1 ,2 ]
Chen, Zefu [1 ,2 ]
Li, Yaqi [1 ,2 ]
Xu, Kexin [1 ,2 ]
Liu, Bowen [1 ,2 ]
Cheng, Xi [1 ,2 ]
Wen, Wen [1 ,2 ]
Li, Guozhuang [1 ,2 ]
Chen, Guilin [1 ,2 ]
Zhao, Zhengye [1 ,2 ]
Qiu, Guixing [1 ,2 ,3 ]
Liu, Pengfei [6 ,7 ]
Zhang, Terry Jianguo [1 ,2 ,3 ]
Wu, Zhihong [1 ,2 ,3 ,4 ,5 ]
Wu, Nan [1 ,2 ,3 ]
机构
[1] Peking Union Med Coll & Chinese Acad Med Sci, Dept Orthoped Surg, State Key Lab Complex Severe & Rare Dis, Peking Union Med Coll Hosp, Beijing 100730, Peoples R China
[2] Beijing Key Lab Genet Res Skeletal Deform, Beijing 100730, Peoples R China
[3] Chinese Acad Med Sci, Key Lab Big Data Spinal Deform, Beijing 100730, Peoples R China
[4] Peking Union Med Coll & Chinese Acad Med Sci, Peking Union Med Coll Hosp, Med Res Ctr, Beijing 100730, Peoples R China
[5] Chinese Acad Med Sci, Med Res Ctr Orthoped, Beijing 100730, Peoples R China
[6] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
[7] Baylor Genet, Houston, TX 77021 USA
来源
CELL REPORTS METHODS | 2024年 / 4卷 / 01期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
SEQUENCE; DATABASE; IMPACT;
D O I
10.1016/j.crmeth.2023.100687
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Leveraging protein structural information to evaluate pathogenicity has been hindered by the scarcity of experimentally determined 3D protein. With the aid of AlphaFold2 predictions, we developed the structure -informed genetic missense mutation assessor (SIGMA) to predict missense variant pathogenicity. In comparison with existing predictors across labeled variant datasets and experimental datasets, SIGMA demonstrates superior performance in predicting missense variant pathogenicity (AUC = 0.933). We found that the relative solvent accessibility of the mutated residue contributed greatly to the predictive ability of SIGMA. We further explored combining SIGMA with other top -tier predictors to create SIGMA+, proving highly effective for variant pathogenicity prediction (AUC = 0.966). To facilitate the application of SIGMA, we precomputed SIGMA scores for over 48 million possible missense variants across 3,454 disease -associated genes and developed an interactive online platform (https://www.sigma-pred.org/). Overall, by leveraging protein structure information, SIGMA offers an accurate structure -based approach to evaluating the pathogenicity of missense variants.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] MVP predicts the pathogenicity of missense variants by deep learning
    Qi, Hongjian
    Zhang, Haicang
    Zhao, Yige
    Chen, Chen
    Long, John J.
    Chung, Wendy K.
    Guan, Yongtao
    Shen, Yufeng
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [2] Rhapsody: predicting the pathogenicity of human missense variants
    Ponzoni, Luca
    Penaherrera, Daniel A.
    Oltvai, Zoltan N.
    Bahar, Ivet
    BIOINFORMATICS, 2020, 36 (10) : 3084 - 3092
  • [3] Improved pathogenicity prediction for rare human missense variants
    Wu, Yingzhou
    Li, Roujia
    Sun, Song
    Weile, Jochen
    Roth, Frederick P.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (10) : 1891 - 1906
  • [4] Performance of Mutation Pathogenicity Prediction Methods on Missense Variants
    Thusberg, Janita
    Olatubosun, Ayodeji
    Vihinen, Mauno
    HUMAN MUTATION, 2011, 32 (04) : 358 - 368
  • [5] StrVCTVRE: A supervised learning method to predict the pathogenicity of human genome structural variants
    Sharo, Andrew G.
    Hu, Zhiqiang
    Sunyaev, Shamil R.
    Brenner, Steven E.
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (02) : 195 - 209
  • [6] LYRUS: a machine learning model for predicting the pathogenicity of missense variants
    Lai, Jiaying
    Yang, Jordan
    Gamsiz Uzun, Ece D.
    Rubenstein, Brenda M.
    Sarkar, Indra Neil
    BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [7] An Ensemble Approach to Predict the Pathogenicity of Synonymous Variants
    Ranganathan Ganakammal, Satishkumar
    Alexov, Emil
    GENES, 2020, 11 (09) : 1 - 10
  • [8] Predicting pathogenicity of missense variants with weakly supervised regression
    Cao, Yue
    Sun, Yuanfei
    Karimi, Mostafa
    Chen, Haoran
    Moronfoye, Oluwaseyi
    Shen, Yang
    HUMAN MUTATION, 2019, 40 (09) : 1579 - 1592
  • [9] A domain damage index to prioritizing the pathogenicity of missense variants
    Chen, Hua-Chang
    Wang, Jing
    Liu, Qi
    Shyr, Yu
    HUMAN MUTATION, 2021, 42 (11) : 1503 - 1517
  • [10] Impact of deleterious missense PRKCI variants on structural and functional dynamics of protein
    Shah, Hania
    Khan, Khushbukhat
    Khan, Naila
    Badshah, Yasmin
    Ashraf, Naeem Mahmood
    Shabbir, Maria
    SCIENTIFIC REPORTS, 2022, 12 (01):