Quiescent Optical Solitons for the Concatenation Model Having Nonlinear Chromatic Dispersion with Differential Group Delay

被引:21
作者
Arnous, Ahmed H. [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Yildirim, Yakup [6 ,7 ]
Asiri, Asim [3 ]
机构
[1] El Shorouk Acad, Higher Inst Engn, Dept Phys & Engn Math, Cairo, Egypt
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA USA
[3] King Abdulaziz Univ, Dept Math, Ctr Modern Math Sci & their Applicat, Math Modeling & Appl Comp Res Grp, Jeddah, Saudi Arabia
[4] Dunarea de Jos Univ Galati, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, Galati, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Medunsa, South Africa
[6] Biruni Univ, Dept Comp Engn, Istanbul, Turkiye
[7] Near East Univ, Dept Math, Nicosia, Cyprus
来源
CONTEMPORARY MATHEMATICS | 2023年 / 4卷 / 04期
关键词
sine-Gordon equation; birefringence; Kudryashov; Riccati;
D O I
10.37256/cm.4420233596
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This study recovers quiescent optical solitons within a complex concatenation model featuring nonlinear chromatic dispersion and differential group delay. It employs the sine-Gordon equation approach and the projective Riccati equation scheme. The results include the successful recovery of soliton solutions and the identification of parameter restrictions for their existence. The novelty lies in the application of these methods to this specific problem, offering valuable insights for optical communication system design.
引用
收藏
页码:877 / 904
页数:28
相关论文
共 31 条
[1]   Numerical solution for generalized nonlinear fractional integro-differential equations with linear functional arguments using Chebyshev series [J].
Ali, Khalid K. ;
Abd El Salam, Mohamed A. ;
Mohamed, Emad M. H. ;
Samet, Bessem ;
Kumar, Sunil ;
Osman, M. S. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[2]   Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions [J].
Ankiewicz, Adrian ;
Wang, Yan ;
Wabnitz, Stefan ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2014, 89 (01)
[3]   Higher-order integrable evolution equation and its soliton solutions [J].
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2014, 378 (04) :358-361
[4]   Optical solitons and conservation laws for the concatenation model: Power-law nonlinearity* [J].
Arnous, Ahmed H. ;
Biswas, Anjan ;
Kara, Abdul H. ;
Yildirim, Yakup ;
Moraru, Luminita ;
Iticescu, Catalina ;
Moldovanu, Simona ;
Alghamdi, Abdulah A. .
AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (02)
[5]   Optical solitons and conservation laws for the concatenation model with spatio-temporal dispersion (internet traffic regulation) [J].
Arnous, Ahmed H. H. ;
Biswas, Anjan ;
Kara, Abdul H. H. ;
Yildirim, Yakup ;
Moraru, Luminita ;
Iticescu, Catalina ;
Moldovanu, Simona ;
Alghamdi, Abdulah A. A. .
JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2023, 19 (02)
[6]   Optical soliton solutions for resonant Schro•dinger equation with anti-cubic nonlinearity [J].
Awan, A. U. ;
Rehman, H. U. ;
Tahir, M. ;
Ramzan, M. .
OPTIK, 2021, 227
[7]   Multiple soliton solutions with chiral nonlinear Schrodinger's equation in (2+1)-dimensions [J].
Awan, Aziz Ullah ;
Tahir, Muhammad ;
Abro, Kashif Ali .
EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2021, 85 :68-75
[8]   Optical Solitons for the Concatenation Model with Differential Group Delay: Undetermined Coefficients [J].
Biswas, Anjan ;
Vega-Guzman, Jose ;
Yildirim, Yakup ;
Moraru, Luminita ;
Iticescu, Catalina ;
Alghamdi, Abdulah A. .
MATHEMATICS, 2023, 11 (09)
[9]   Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model [J].
Chen, Si-Jia ;
Lu, Xing ;
Yin, Yu-Hang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (05)
[10]   Elastic collision between one lump wave and multiple stripe waves of nonlinear evolution equations [J].
Chen, Si-Jia ;
Yin, Yu-Hang ;
Lu, Xing .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130