Dose-response model;
Continuous toxicity outcomes;
Bayesian adaptive designs;
Phase I cancer clinical trials;
REASSESSMENT METHOD;
ESCALATION;
DESIGNS;
REGRESSION;
D O I:
10.1186/s13063-023-07793-0
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
BackgroundThe past few decades have seen remarkable developments in dose-finding designs for phase I cancer clinical trials. While many of these designs rely on a binary toxicity response, there is an increasing focus on leveraging continuous toxicity responses. A continuous toxicity response pertains to a quantitative measure represented by real numbers. A higher value corresponds not only to an elevated likelihood of side effects for patients but also to an increased probability of treatment efficacy. This relationship between toxicity and dose is often nonlinear, necessitating flexibility in the quest to find an optimal dose.MethodsA flexible, fully Bayesian dose-finding design is proposed to capitalize on continuous toxicity information, operating under the assumption that the true shape of the dose-toxicity curve is nonlinear.ResultsWe conduct simulations of clinical trials across varying scenarios of non-linearity to evaluate the operational characteristics of the proposed design. Additionally, we apply the proposed design to a real-world problem to determine an optimal dose for a molecularly targeted agent.ConclusionsPhase I cancer clinical trials, designed within a fully Bayesian framework with the utilization of continuous toxicity outcomes, offer an alternative approach to finding an optimal dose, providing unique benefits compared to trials designed based on binary toxicity outcomes.
机构:
Univ Lancaster, Med & Pharmaceut Stat Res Unit, Dept Math & Stat, Lancaster LA1 4YF, EnglandUniv Lancaster, Med & Pharmaceut Stat Res Unit, Dept Math & Stat, Lancaster LA1 4YF, England
Mozgunov, Pavel
Jaki, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lancaster, Med & Pharmaceut Stat Res Unit, Dept Math & Stat, Lancaster LA1 4YF, EnglandUniv Lancaster, Med & Pharmaceut Stat Res Unit, Dept Math & Stat, Lancaster LA1 4YF, England
机构:
European Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Univ Milan, Dept Oncol & Haematooncol, Milan, ItalyEuropean Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Criscitiello, Carmen
Marra, Antonio
论文数: 0引用数: 0
h-index: 0
机构:
European Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Univ Milan, Dept Oncol & Haematooncol, Milan, Italy
Mem Sloan Kettering Canc Ctr, Dept Pathol, 1275 York Ave, New York, NY 10021 USAEuropean Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Marra, Antonio
Morganti, Stefania
论文数: 0引用数: 0
h-index: 0
机构:
European Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Univ Milan, Dept Oncol & Haematooncol, Milan, ItalyEuropean Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Morganti, Stefania
论文数: 引用数:
h-index:
机构:
Zagami, Paola
Gandini, Sara
论文数: 0引用数: 0
h-index: 0
机构:
European Inst Oncol IRCCS, Dept Expt Oncol, IEO, Milan, ItalyEuropean Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Gandini, Sara
Esposito, Angela
论文数: 0引用数: 0
h-index: 0
机构:
European Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Univ Milan, Dept Oncol & Haematooncol, Milan, ItalyEuropean Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Esposito, Angela
Curigliano, Giuseppe
论文数: 0引用数: 0
h-index: 0
机构:
European Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy
Univ Milan, Dept Oncol & Haematooncol, Milan, ItalyEuropean Inst Oncol IRCCS, Div Early Drug Dev Innovat Therapies, IEO, Milan, Italy