Dose-response model;
Continuous toxicity outcomes;
Bayesian adaptive designs;
Phase I cancer clinical trials;
REASSESSMENT METHOD;
ESCALATION;
DESIGNS;
REGRESSION;
D O I:
10.1186/s13063-023-07793-0
中图分类号:
R-3 [医学研究方法];
R3 [基础医学];
学科分类号:
1001 ;
摘要:
BackgroundThe past few decades have seen remarkable developments in dose-finding designs for phase I cancer clinical trials. While many of these designs rely on a binary toxicity response, there is an increasing focus on leveraging continuous toxicity responses. A continuous toxicity response pertains to a quantitative measure represented by real numbers. A higher value corresponds not only to an elevated likelihood of side effects for patients but also to an increased probability of treatment efficacy. This relationship between toxicity and dose is often nonlinear, necessitating flexibility in the quest to find an optimal dose.MethodsA flexible, fully Bayesian dose-finding design is proposed to capitalize on continuous toxicity information, operating under the assumption that the true shape of the dose-toxicity curve is nonlinear.ResultsWe conduct simulations of clinical trials across varying scenarios of non-linearity to evaluate the operational characteristics of the proposed design. Additionally, we apply the proposed design to a real-world problem to determine an optimal dose for a molecularly targeted agent.ConclusionsPhase I cancer clinical trials, designed within a fully Bayesian framework with the utilization of continuous toxicity outcomes, offer an alternative approach to finding an optimal dose, providing unique benefits compared to trials designed based on binary toxicity outcomes.
机构:
Univ Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Gajewski, Byron J.
Meinzer, Caitlyn
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC 29425 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Meinzer, Caitlyn
Berry, Scott M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Berry Consultants LLC, Austin, TX USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Berry, Scott M.
Rockswold, Gaylan L.
论文数: 0引用数: 0
h-index: 0
机构:
Hennepin Cty Med Ctr, Minneapolis, MN 55415 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Rockswold, Gaylan L.
Barsan, William G.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Barsan, William G.
Korley, Frederick K.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Emergency Med, Ann Arbor, MI 48109 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Korley, Frederick K.
Martin, Renee' H.
论文数: 0引用数: 0
h-index: 0
机构:
Med Univ South Carolina, Dept Publ Hlth Sci, Charleston, SC 29425 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
机构:
Univ Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA
Huang, Xiaqing
Gajewski, Byron J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USAUniv Kansas, Med Ctr, Dept Biostat & Data Sci, Mail Stop 1026,3901 Rainbow Blvd, Kansas City, KS 66160 USA