The simulation of microstructural evolutions in friction stir additive manufacturing

被引:5
作者
Zhang, Z. [1 ,3 ]
Zhou, H. S. [1 ]
Tan, Z. J. [1 ,2 ]
Kong, D. S. [1 ]
Wang, Y. F. [1 ]
机构
[1] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, Dalian, Peoples R China
[2] Natl Key Lab Aerosp Flight Technol, Xiongan, Peoples R China
[3] Dalian Univ Technol, Dept Engn Mech, State Key Lab Struct Anal Ind Equipment, 2 Linggong Rd, Dalian 116024, Peoples R China
关键词
Friction stir additive manufacturing; Monte Carlo model; phase transformation; recrystallization; ALPHA-PHASE TRANSFORMATION; MECHANICAL-PROPERTIES; GRAIN-GROWTH; ALUMINUM-ALLOY; BOND STRENGTH; WELDED-JOINTS; TI-6AL-4V; COMPOSITES; MORPHOLOGY; BEHAVIOR;
D O I
10.1177/09544054231188991
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Both recrystallization and solid state phase transformation take key role for the determination of final mechanical properties in friction stir additive manufacturing (FSAM) of titanium alloy. Monte Carlo model is developed to simulate the microstructural changes and a two scale strategy is used to simulate both the recrystallization and the solid state phase transformation in FSAM of duplex titanium alloy. Results indicate that the selection of the building direction can lead to different temperature variations in FSAM due to the different heat accumulations. Lower temperature leads to lower cooling rate in FSAM. This is the reason that the volume fraction of & alpha; phase is decreased when the process temperature is decreased. Higher temperature leads to the formation of bigger grains when the rotating speed is increased or the transverse speed is decreased.
引用
收藏
页码:1233 / 1244
页数:12
相关论文
共 66 条
[1]   Friction stir welding of similar and dissimilar AA7075 and AA5083 [J].
Ahmed, M. M. Z. ;
Ataya, Sabbah ;
Selema, M. M. El-Sayed ;
Ammar, H. R. ;
Ahmed, Essam .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2017, 242 :77-91
[2]   Alloys-by-design: A low-modulus titanium alloy for additively manufacture d biome dical implants [J].
Alabort, E. ;
Tang, Y. T. ;
Barba, D. ;
Reed, R. C. .
ACTA MATERIALIA, 2022, 229
[3]   Simulation of dynamic recrystallization process during friction stir welding of AZ91 magnesium alloy [J].
Asadi, Parviz ;
Givi, Mohammad Kazem Besharati ;
Akbari, Mostafa .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2016, 83 (1-4) :301-311
[4]   Properties and microstructure of double-sided friction stir-welded microalloyed steel [J].
Baker, T. N. ;
McPherson, N. A. .
MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (02) :234-243
[5]   Friction stir welding of mild steel: tool durability and steel microstructure [J].
De, A. ;
Bhadeshia, H. K. D. H. ;
DebRoy, T. .
MATERIALS SCIENCE AND TECHNOLOGY, 2014, 30 (09) :1050-1056
[6]   Refilled friction stir spotwelding of aluminum alloy to galvanized steel sheets [J].
Dong, Honggang ;
Chen, Su ;
Song, Yang ;
Guo, Xin ;
Zhang, Xiaosheng ;
Sun, Zhiyang .
MATERIALS & DESIGN, 2016, 94 :457-466
[7]   Comparative study of fatigue and fracture in friction stir and electron beam welds of 24mm thick titanium alloy Ti-6Al-4V [J].
Edwards, Paul D. ;
Ramulu, M. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2016, 39 (10) :1226-1240
[8]   CDRX modelling in friction stir welding of aluminium alloys [J].
Fratini, L ;
Buffa, G .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2005, 45 (10) :1188-1194
[9]   Friction stir welding of carbon steels [J].
Fujii, Hidetoshi ;
Cui, Ling ;
Tsuji, Nobuhiro ;
Maeda, Masakatsu ;
Nakata, Kazuhiro ;
Nogi, Kiyoshi .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2006, 429 (1-2) :50-57
[10]   Material flow, microstructure and mechanical properties of friction stir welded AA 2024-T3 enhanced by ultrasonic vibrations [J].
Gao, S. ;
Wu, C. S. ;
Padhy, G. K. .
JOURNAL OF MANUFACTURING PROCESSES, 2017, 30 :385-395