Fundamental investigations on the ionic transport and thermodynamic properties of non-aqueous potassium-ion electrolytes

被引:41
作者
Dhir, Shobhan [1 ]
Jagger, Ben [1 ]
Maguire, Alen [1 ]
Pasta, Mauro [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
BATTERY ELECTROLYTES; LITHIUM; DIFFUSION; SODIUM; LIQUID; GRAPHITE;
D O I
10.1038/s41467-023-39523-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Non-aqueous potassium-ion batteries (KIBs) represent a promising complementary technology to lithium-ion batteries due to the availability and low cost of potassium. Moreover, the lower charge density of K+ compared to Li+ favours the ion-transport properties in liquid electrolyte solutions, thus, making KIBs potentially capable of improved rate capability and low-temperature performance. However, a comprehensive study of the ionic transport and thermodynamic properties of non-aqueous K-ion electrolyte solutions is not available. Here we report the full characterisation of the ionic transport and thermodynamic properties of a model non-aqueous K-ion electrolyte solution system comprising potassium bis(fluorosulfonyl)imide (KFSI) salt and 1,2-dimethoxyethane (DME) solvent and compare it with its Li-ion equivalent (i.e., LiFSI:DME), over the concentration range 0.25-2 molal. Using tailored K metal electrodes, we demonstrate that KFSI:DME electrolyte solutions show higher salt diffusion coefficients and cation transference numbers than LiFSI:DME solutions. Finally, via Doyle-Fuller-Newman (DFN) simulations, we investigate the K-ion and Li-ion storage properties for K divide divide graphite and Li divide divide graphite cells. K-ion batteries may have rate advantages over Li-ion batteries due to the larger size of the cation. Here, the authors characterize the ionic transport and thermodynamic properties of non-aqueous K-ion electrolyte solutions demonstrating higher K-ion mobility than the Li-ion counterpart.
引用
收藏
页数:12
相关论文
共 73 条
[1]   Solvated Li-ion transfer at interface between graphite and electrolyte [J].
Abe, T ;
Fukuda, H ;
Iriyama, Y ;
Ogumi, Z .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (08) :A1120-A1123
[2]   Electrochemical Thermal-Mechanical Modelling of Stress Inhomogeneity in Lithium-Ion Pouch Cells [J].
Ai, Weilong ;
Kraft, Ludwig ;
Sturm, Johannes ;
Jossen, Andreas ;
Wu, Billy .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (01)
[3]   Comparing the Solid Electrolyte Interphases on Graphite Electrodes in K and Li Half Cells [J].
Allgayer, Franziska ;
Maibach, Julia ;
Jeschull, Fabian .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (01) :1136-1148
[4]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[5]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[6]   EBSD-coupled indentation: nanoscale mechanics of lithium metal [J].
Aspinall, Jack ;
Armstrong, David E. J. ;
Pasta, Mauro .
MATERIALS TODAY ENERGY, 2022, 30
[7]  
Atkins P. W., 2018, Atkins' Physical Chemistry, V11th
[8]   Mapping of Lithium-Ion Battery Electrolyte Transport Properties and Limiting Currents with In Situ MRI [J].
Bazak, J. David ;
Allen, J. P. ;
Krachkovskiy, S. A. ;
Goward, G. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2020, 167 (14)
[9]   Interfacial Effects on Transport Coefficient Measurements in Li-ion Battery Electrolytes [J].
Bergstrom, Helen K. ;
Fong, Kara D. ;
McCloskey, Bryan D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (06)
[10]   STEADY-STATE CURRENT FLOW IN SOLID BINARY ELECTROLYTE CELLS [J].
BRUCE, PG ;
VINCENT, CA .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1987, 225 (1-2) :1-17