Non-desolvation Zn2+ storage mechanism enables MoS2 anode with enhanced interfacial charge-transfer kinetics for low temperature zinc-ion batteries

被引:16
作者
Lv, Zeheng [1 ]
Tan, Yu [2 ]
Kang, Yuanhong [1 ]
Yang, Jin [1 ]
Cheng, Xian [3 ]
Meng, Weiwei [4 ]
Zhang, Yufei [3 ]
Li, Cheng Chao [3 ]
Zhao, Jinbao [1 ]
Yang, Yang [1 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, State Prov Joint Engn Lab Power Source Technol New, Xiamen 361005, Peoples R China
[2] Hunan Univ, Coll Mat Sci & Engn, Changsha 410082, Peoples R China
[3] Guangdong Univ Technol, Sch Chem Engn & Light Ind, Guangzhou 510006, Peoples R China
[4] State Key Lab Vanadium & Titanium Resources Compre, Panzhihua 617000, Peoples R China
基金
中国国家自然科学基金;
关键词
rocking-chair aqueous zinc-ion battery; insertion-type anode materials; non-desolvation Zn2+ storage mechanism; charge screening effect; layered MoS2 anode; INTERCALATION; HYBRID; CAPACITY;
D O I
10.1007/s11426-022-1556-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The emerging rocking-chair aqueous zinc-ion battery (AZIB) configuration provides a promising approach for realizing their practical applications by avoiding the critical drawbacks of Zn metal anodes including unsatisfactory Coulombic efficiency and low Zn utilization. Therefore, exploiting appropriate insertion-type anodes with fast charge-transfer kinetics is of great importance, and many modifications focusing on the improvement of electron transport and bulk Zn2+ diffusion have been proposed. However, the interfacial Zn2+ transfer determined by the desolvation process actually dominates the kinetics of overall battery reactions, which is mainly overlooked. Herein, the interlayer structure of MoS2 is rationally co-intercalated with water and ethylene glycol (EG) molecules (MoS2@EG), giving rise to a fast non-desolvation Zn2+ storage mechanism, which is verified by the extraordinarily smaller activation energy of interfacial Zn2+ transfer (4.66 kJ mol(-1)) compared with that of pristine MoS2 (56.78 kJ mol(-1)). Furthermore, the results of theoretical calculations, in-situ Raman and ex-situ characterizations also indicate the enhanced structural integrity of MoS2@EG during cycling due to the enlarged interlayer spacing and charge screening effect induced by interlaminar EG molecules. Consequently, the MoS2@EG anode enables excellent cycling stability of both high-energy-density MoS2@EG parallel to PVO (polyaniline intercalated V2O5) and high-voltage MoS2@EG parallel to Na3V2(PO4)(2)O2F (NVPF) full batteries with neglectable capacity decay at -20 degrees C.
引用
收藏
页码:1537 / 1548
页数:12
相关论文
共 63 条
[1]   Strongly coupled tungsten oxide/carbide heterogeneous hybrid for ultrastable aqueous rocking-chair zinc-ion batteries [J].
Cao, Jin ;
Zhang, Dongdong ;
Yue, Yilei ;
Wang, Xiao ;
Srikhaow, Assadawoot ;
Sriprachuabwong, Chakrit ;
Tuantranont, Adisorn ;
Zhang, Xinyu ;
Wu, Zhong-Shuai ;
Qin, Jiaqian .
CHEMICAL ENGINEERING JOURNAL, 2021, 426
[2]   Template-assisted hydrothermal synthesized hydrophilic spherical 1T-MoS2 with excellent zinc storage performance [J].
Cao, Pengfei ;
Chen, Ni ;
Tang, Wenjing ;
Liu, Yating ;
Xia, Yong ;
Wu, Zhuangzhi ;
Li, FuZhi ;
Liu, Yuejun ;
Sun, Aokui .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
[3]   Prototype System of Rocking-Chair Zn-Ion Battery Adopting Zinc Chevrel Phase Anode and Rhombohedral Zinc Hexacyanoferrate Cathode [J].
Chae, Munseok S. ;
Hong, Seung-Tae .
BATTERIES-BASEL, 2019, 5 (01)
[4]   Zinc ions pillared vanadate cathodes by chemical pre-intercalation towards long cycling life and low-temperature zinc ion batteries [J].
Chen, Shufeng ;
Zhang, Yufei ;
Geng, Hongbo ;
Yang, Yang ;
Rui, Xianhong ;
Li, Cheng Chao .
JOURNAL OF POWER SOURCES, 2019, 441
[5]   Hexagonal WO3/3D Porous Graphene as a Novel Zinc Intercalation Anode for Aqueous Zinc-Ion Batteries [J].
Chen, Xingfa ;
Huang, Renshu ;
Ding, Mingyu ;
He, Huibing ;
Wang, Fan ;
Yin, Shibin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) :3961-3969
[6]   Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries [J].
Cheng, Yingwen ;
Luo, Langli ;
Zhong, Li ;
Chen, Junzheng ;
Li, Bin ;
Wang, Wei ;
Mao, Scott X. ;
Wang, Chongmin ;
Sprenkle, Vincent L. ;
Li, Guosheng ;
Liu, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :13673-13677
[7]   Hydrogen Isotope Effects on Aqueous Electrolyte for Electrochemical Lithium-Ion Storage [J].
Chou, Jia ;
Zhao, Yao ;
Li, Xue-Ting ;
Wang, Wen-Peng ;
Tan, Shuang-Jie ;
Wang, Ya-Hui ;
Zhang, Juan ;
Yin, Ya-Xia ;
Wang, Fuyi ;
Xin, Sen ;
Guo, Yu-Guo .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (25)
[8]   Controlled Design of Well-Dispersed Ultrathin MoS2 Nanosheets inside Hollow Carbon Skeleton: Toward Fast Potassium Storage by Constructing Spacious "Houses" for K Ions [J].
Cui, Yongpeng ;
Liu, Wei ;
Feng, Wenting ;
Zhang, Yuan ;
Du, Yongxu ;
Liu, Shuang ;
Wang, Huanlei ;
Chen, Ming ;
Zhou, Junan .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (10)
[9]   Ultraviolet Irradiation Treatment for Enhanced Sodium Storage Performance Based on Wide-Interlayer-Spacing Hollow C@MoS2@CN Nanospheres [J].
Duan, Jingying ;
Qin, Guohui ;
Min, Luofu ;
Yang, Yuchen ;
Wang, Chengyang .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38084-38092
[10]  
Geng H., 2019, ADV FUNCT MATER, V30, P2070034, DOI [10.1002/adfm.202070034, DOI 10.1002/ADFM.202070034]