GENERATOR HEART FAILURE DataMart: An integrated framework for heart failure research

被引:9
作者
D'Amario, Domenico [1 ,2 ,3 ]
Laborante, Renzo [1 ]
Delvinioti, Agni [4 ]
Lenkowicz, Jacopo [4 ]
Iacomini, Chiara [4 ]
Masciocchi, Carlotta [4 ]
Luraschi, Alice [4 ]
Damiani, Andrea [4 ]
Rodolico, Daniele [1 ]
Restivo, Attilio [1 ]
Ciliberti, Giuseppe [1 ]
Paglianiti, Donato Antonio [1 ]
Canonico, Francesco [1 ]
Patarnello, Stefano [4 ]
Cesario, Alfredo [4 ]
Valentini, Vincenzo [5 ]
Scambia, Giovanni [4 ]
Crea, Filippo [1 ,2 ]
机构
[1] Univ Cattolica Sacro Cuore, Dept Cardiovasc & Pulm Sci, Rome, Italy
[2] Fdn Policlin Univ A Gemelli IRCCS, Dept Cardiovasc Sci, Rome, Italy
[3] Univ Maggiore Carita, Univ Piemonte Orientale, Dipartimento Toraco Cardiovascolare, Dipartimento Med Translazionale,Unita Operativa Co, Novara, Italy
[4] Fdn Policlin Univ A Gemelli IRCCS, Rome, Italy
[5] Univ Cattolica S Cuore, Fdn Policlin Univ A Gemelli IRCCS, Dept Bioimaging Radiat Oncol & Hematol, Rome, Italy
关键词
heart failure; big data; artificial intelligence; machine learning; datamart; EJECTION FRACTION; ARTIFICIAL-INTELLIGENCE; MANAGEMENT; OUTCOMES; RECORDS; WORLD;
D O I
10.3389/fcvm.2023.1104699
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundHeart failure (HF) is a multifaceted clinical syndrome characterized by different etiologies, risk factors, comorbidities, and a heterogeneous clinical course. The current model, based on data from clinical trials, is limited by the biases related to a highly-selected sample in a protected environment, constraining the applicability of evidence in the real-world scenario. If properly leveraged, the enormous amount of data from real-world may have a groundbreaking impact on clinical care pathways. We present, here, the development of an HF DataMart framework for the management of clinical and research processes. MethodsWithin our institution, Fondazione Policlinico Universitario A. Gemelli in Rome (Italy), a digital platform dedicated to HF patients has been envisioned (GENERATOR HF DataMart), based on two building blocks: 1. All retrospective information has been integrated into a multimodal, longitudinal data repository, providing in one single place the description of individual patients with drill-down functionalities in multiple dimensions. This functionality might allow investigators to dynamically filter subsets of patient populations characterized by demographic characteristics, biomarkers, comorbidities, and clinical events (e.g., re-hospitalization), enabling agile analyses of the outcomes by subsets of patients. 2. With respect to expected long-term health status and response to treatments, the use of the disease trajectory toolset and predictive models for the evolution of HF has been implemented. The methodological scaffolding has been constructed in respect of a set of the preferred standards recommended by the CODE-EHR framework. ResultsSeveral examples of GENERATOR HF DataMart utilization are presented as follows: to select a specific retrospective cohort of HF patients within a particular period, along with their clinical and laboratory data, to explore multiple associations between clinical and laboratory data, as well as to identify a potential cohort for enrollment in future studies; to create a multi-parametric predictive models of early re-hospitalization after discharge; to cluster patients according to their ejection fraction (EF) variation, investigating its potential impact on hospital admissions. ConclusionThe GENERATOR HF DataMart has been developed to exploit a large amount of data from patients with HF from our institution and generate evidence from real-world data. The two components of the HF platform might provide the infrastructural basis for a combined patient support program dedicated to continuous monitoring and remote care, assisting patients, caregivers, and healthcare professionals.
引用
收藏
页数:13
相关论文
共 36 条
[1]   Prediction of left ventricular ejection fraction changes in heart failure patients using machine learning and electronic health records: a multi-site study [J].
Adekkanattu, Prakash ;
Rasmussen, Luke V. ;
Pacheco, Jennifer A. ;
Kabariti, Joseph ;
Stone, Daniel J. ;
Yu, Yue ;
Jiang, Guoqian ;
Luo, Yuan ;
Brandt, Pascal S. ;
Xu, Zhenxing ;
Vekaria, Veer ;
Xu, Jie ;
Wang, Fei ;
Benda, Natalie C. ;
Peng, Yifan ;
Goyal, Parag ;
Ahmad, Faraz S. ;
Pathak, Jyotishman .
SCIENTIFIC REPORTS, 2023, 13 (01)
[2]   Heart failure with recovered ejection fraction: Clinical characteristics, determinants and prognosis. CARDIOCHUS-CHOP registry [J].
Agra Bermejo, Rosa ;
Gonzalez Babarro, Eva ;
Lopez Canoa, J. Nicolas ;
Varela Roman, Alfonso ;
Gomez Otero, Ines ;
Oro Ayude, Marcos ;
Parada Vazquez, Pablo ;
Gomez Rodriguez, Isabel ;
Diaz Castro, Oscar ;
Ramon Gonzalez-Juanatey, Jose .
CARDIOLOGY JOURNAL, 2018, 25 (03) :353-362
[3]   The Fast Health Interoperability Resources (FIHR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities [J].
Ayaz, Muhammad ;
Pasha, Muhammad F. ;
Alzahrani, Mohammed Y. ;
Budiarto, Rahmat ;
Stiawan, Deris .
JMIR MEDICAL INFORMATICS, 2021, 9 (07)
[4]   Heart Failure With Recovered Ejection Fraction Clinical Description, Biomarkers, and Outcomes [J].
Basuray, Anupam ;
French, Benjamin ;
Ky, Bonnie ;
Vorovich, Esther ;
Olt, Caroline ;
Sweitzer, Nancy K. ;
Cappola, Thomas P. ;
Fang, James C. .
CIRCULATION, 2014, 129 (23) :2380-2387
[5]   In-hospital worsening heart failure: a clinically relevant endpoint? [J].
Clark, Andrew L. ;
Cherif, Myriam ;
McDonagh, Theresa A. ;
Squire, Iain B. .
ESC HEART FAILURE, 2018, 5 (01) :9-18
[6]   Temporal trends and patterns in heart failure incidence: a population-based study of 4 million individuals [J].
Conrad, Nathalie ;
Judge, Andrew ;
Tran, Jenny ;
Mohseni, Hamid ;
Hedgecott, Deborah ;
Crespillo, Abel Perez ;
Allison, Moira ;
Hemingway, Harry ;
Cleland, John G. ;
McMurray, John J. V. ;
Rahimi, Kazem .
LANCET, 2018, 391 (10120) :572-580
[7]   The 'Digital Twin' to enable the vision of precision cardiology [J].
Corral-Acero, Jorge ;
Margara, Francesca ;
Marciniak, Maciej ;
Rodero, Cristobal ;
Loncaric, Filip ;
Feng, Yingjing ;
Gilbert, Andrew ;
Fernandes, Joao F. ;
Bukhari, Hassaan A. ;
Wajdan, Ali ;
Martinez, Manuel Villegas ;
Santos, Mariana Sousa ;
Shamohammdi, Mehrdad ;
Luo, Hongxing ;
Westphal, Philip ;
Leeson, Paul ;
DiAchille, Paolo ;
Gurev, Viatcheslav ;
Mayr, Manuel ;
Geris, Liesbet ;
Pathmanathan, Pras ;
Morrison, Tina ;
Cornelussen, Richard ;
Prinzen, Frits ;
Delhaas, Tammo ;
Doltra, Ada ;
Sitges, Marta ;
Vigmond, Edward J. ;
Zacur, Ernesto ;
Grau, Vicente ;
Rodriguez, Blanca ;
Remme, Espen W. ;
Niederer, Steven ;
Mortier, Peter ;
McLeod, Kristin ;
Potse, Mark ;
Pueyo, Esther ;
Bueno-Orovio, Alfonso ;
Lamata, Pablo .
EUROPEAN HEART JOURNAL, 2020, 41 (48) :4556-+
[8]   Association between dosing and combination use of medications and outcomes in heart failure with reduced ejection fraction: data from the Swedish Heart Failure Registry [J].
D'Amario, Domenico ;
Rodolico, Daniele ;
Rosano, Giuseppe M. C. ;
Dahlstrom, Ulf ;
Crea, Filippo ;
Lund, Lars H. ;
Savarese, Gianluigi .
EUROPEAN JOURNAL OF HEART FAILURE, 2022, 24 (05) :871-884
[9]   Big Data in Cardiology: State-of-Art and Future Prospects [J].
Dai, Haijiang ;
Younis, Arwa ;
Kong, Jude Dzevela ;
Puce, Luca ;
Jabbour, Georges ;
Yuan, Hong ;
Bragazzi, Nicola Luigi .
FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
[10]   Building an Artificial Intelligence Laboratory Based on Real World Data: The Experience of Gemelli Generator [J].
Damiani, A. ;
Masciocchi, C. ;
Lenkowicz, J. ;
Capocchiano, N. D. ;
Boldrini, L. ;
Tagliaferri, L. ;
Cesario, A. ;
Sergi, P. ;
Marchetti, A. ;
Luraschi, A. ;
Patarnello, S. ;
Valentini, V. .
FRONTIERS IN COMPUTER SCIENCE, 2021, 3