Loop corrections in Minkowski spacetime away from equilibrium. Part II. Finite-time results

被引:10
作者
Chaykov, Spasen [1 ]
Agarwal, Nishant [1 ]
Bahrami, Sina [2 ]
Holman, R. [3 ]
机构
[1] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA
[2] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA
[3] Minerva Univ, 14 Mint Plaza,Suite 300, San Francisco, CA 94103 USA
基金
美国国家科学基金会;
关键词
Non-Equilibrium Field Theory; Renormalization and Regularization; Effective Field Theories; EXPECTATION VALUE FORMALISM; QUANTUM;
D O I
10.1007/JHEP02(2023)094
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Loop corrections to finite-time correlation functions in quantum field theories away from equilibrium can be calculated using the in-in path integral approach. In this paper, we calculate the unequal-time two-point correlator for different massless self-interacting scalar quantum field theories on a Minkowski background, starting the field evolution at an arbitrary initial time. We find the counterterms that need to be added to UV-renormalize the result, including usual in-out counterterms in the dynamics and additional initial state counterterms that are required to cancel all UV divergences. We find that the late-time limit of the renormalized correlation function exhibits a linear or logarithmic growth in time, depending on whether the interaction strength is dimension-one or dimensionless, respectively. The late-time correlations match those obtained in our companion paper and, as shown there, the divergences do not indicate a real IR issue, consistent with what one would expect in Minkowski.
引用
收藏
页数:19
相关论文
共 21 条
[1]  
Agarwal N., INITIAL VALUE UNPUB
[2]   Effective field theory and non-Gaussianity from general inflationary states [J].
Agarwal, Nishant ;
Holman, R. ;
Tolley, Andrew J. ;
Lin, Jennifer .
JOURNAL OF HIGH ENERGY PHYSICS, 2013, (05)
[3]  
Baacke J, 2001, PHYS REV D, V63, DOI 10.1103/PhysRevD.63.045023
[4]   Choice of initial states in nonequilibrium dynamics [J].
Baacke, J ;
Heitmann, K ;
Patzold, C .
PHYSICAL REVIEW D, 1998, 57 (10) :6398-6405
[5]   EXPECTATION VALUE FORMALISM IN QUANTUM FIELD THEORY .1. [J].
BAKSHI, PM ;
MAHANTHAPPA, KT .
JOURNAL OF MATHEMATICAL PHYSICS, 1963, 4 (01) :1-&
[6]  
BAKSHI PM, 1963, J MATH PHYS, V4, P12, DOI 10.1063/1.1703879
[7]   Momentum-space entanglement and renormalization in quantum field theory [J].
Balasubramanian, Vijay ;
McDermott, Michael B. ;
Van Raamsdonk, Mark .
PHYSICAL REVIEW D, 2012, 86 (04)
[8]  
Berges J, 2004, AIP CONF PROC, V739, P3, DOI 10.1063/1.1843591
[9]   CLOSED-TIME-PATH FUNCTIONAL FORMALISM IN CURVED SPACETIME - APPLICATION TO COSMOLOGICAL BACK-REACTION PROBLEMS [J].
CALZETTA, E ;
HU, BL .
PHYSICAL REVIEW D, 1987, 35 (02) :495-509
[10]  
Calzetta E.A., 2022, CAMBRIDGE MONOGRAPHS, DOI [10.1017/9781009290036, DOI 10.1017/9781009290036]