A new radiomics approach combining the tumor and peri-tumor regions to predict lymph node metastasis and prognosis in gastric cancer

被引:11
作者
Yang, Yutao [1 ]
Chen, Hao [2 ]
Ji, Min [3 ]
Wu, Jianzhang [2 ]
Chen, Xiaoshan [1 ]
Liu, Fenglin [2 ,4 ]
Rao, Shengxiang [5 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Radiol, Shanghai, Peoples R China
[2] Fudan Univ, Zhongshan Hosp, Dept Gen Surg, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[3] Shanghai United Imaging Healthcare Co Ltd, Res Collaborat, Shanghai, Peoples R China
[4] Fudan Univ, Zhongshan Hosp, Dept Canc Ctr, Shanghai, Peoples R China
[5] Shanghai Inst Med Imaging, Shanghai 200032, Peoples R China
来源
GASTROENTEROLOGY REPORT | 2023年 / 11卷
基金
中国国家自然科学基金;
关键词
radiomics; lymph node metastasis; prognosis; gastric cancer; MULTIDETECTOR ROW CT; 8TH EDITION; HETEROGENEITY;
D O I
10.1093/gastro/goac080
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Objective The development of non-invasive methods for evaluating lymph node metastasis (LNM) preoperatively in gastric cancer (GC) is necessary. In this study, we developed a new radiomics model combining features from the tumor and peri-tumor regions for predicting LNM and prognoses. Methods This was a retrospective observational study. In this study, two cohorts of patients with GC treated in Zhongshan Hospital Fudan University (Shanghai, China) were included. In total, 193 patients were assigned to the internal training/validation cohort; another 98 patients were assigned to the independent testing cohort. The radiomics features were extracted from venous phase computerized tomography (CT) images. The radiomics model was constructed and the output was defined as the radiomics score (RS). The performance of the RS and CT-defined N status (ctN) for predicting LNM was compared using the area under the curve (AUC). The 5-year overall survival and progression-free survival were compared between different subgroups using Kaplan-Meier curves. Results In both cohorts, the RS was significantly higher in the LNM-positive group than that in the LNM-negative group (all P < 0.001). The radiomics model combining features from the tumor and peri-tumor regions achieved the highest AUC in predicting LNM (AUC, 0.779 and 0.724, respectively), which performed better than the radiomics model based only on the tumor region and ctN (AUC, 0.717, 0.622 and 0.710, 0.603, respectively). The differences in 5-year overall survival and progression-free survival between high-risk and low-risk groups were significant (both P < 0.001). Conclusions The radiomics model combining features from the tumor and peri-tumor regions could effectively predict the LNM in GC. Risk stratification based on the RS was capable of distinguishing patients with poor prognoses.
引用
收藏
页数:9
相关论文
共 24 条
[1]   Gastric Cancer, Version 3.2016 [J].
Ajani, Jaffer A. ;
D'Amico, Thomas A. ;
Almhanna, Khaldoun ;
Bentrem, David J. ;
Chao, Joseph ;
Das, Prajnan ;
Denlinger, Crystal S. ;
Fanta, Paul ;
Farjah, Farhood ;
Fuchs, Charles S. ;
Gerdes, Hans ;
Gibson, Michael ;
Glasgow, Robert E. ;
Hayman, James A. ;
Hochwald, Steven ;
Hofstetter, Wayne L. ;
Ilson, David H. ;
Jaroszewski, Dawn ;
Johung, Kimberly L. ;
Keswani, Rajesh N. ;
Kleinberg, Lawrence R. ;
Korn, W. Michael ;
Leong, Stephen ;
Linn, Catherine ;
Lockhart, A. Craig ;
Ly, Quan P. ;
Mulcahy, Mary F. ;
Orringer, Mark B. ;
Perry, Kyle A. ;
Poultsides, George A. ;
Scott, Walter J. ;
Strong, Vivian E. ;
Washington, Mary Kay ;
Weksler, Benny ;
Willett, Christopher G. ;
Wright, Cameron D. ;
Zelman, Debra ;
McMillian, Nicole ;
Sundar, Hema .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2016, 14 (10) :1286-1312
[2]   The Eighth Edition AJCC Cancer Staging Manual: Continuing to build a bridge from a population-based to a more "personalized" approach to cancer staging [J].
Amin, Mahul B. ;
Greene, Frederick L. ;
Edge, Stephen B. ;
Compton, Carolyn C. ;
Gershenwald, Jeffrey E. ;
Brookland, Robert K. ;
Meyer, Laura ;
Gress, Donna M. ;
Byrd, David R. ;
Winchester, David P. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2017, 67 (02) :93-99
[3]   Tumour heterogeneity in the clinic [J].
Bedard, Philippe L. ;
Hansen, Aaron R. ;
Ratain, Mark J. ;
Siu, Lillian L. .
NATURE, 2013, 501 (7467) :355-364
[4]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[5]   Imaging strategies in the management of gastric cancer: current role and future potential of MRI [J].
Borggreve, Alicia S. ;
Goense, Lucas ;
Brenkman, Hylke J. F. ;
Mook, Stella ;
Meijer, Gert J. ;
Wessels, Frank J. ;
Verheij, Marcel ;
Jansen, Edwin P. M. ;
van Hillegersberg, Richard ;
van Rossum, Peter S. N. ;
Ruurda, Jelle P. .
BRITISH JOURNAL OF RADIOLOGY, 2019, 92 (1097)
[6]   Neoadjuvant chemotherapy in advanced gastric and esophago-gastric cancer. Meta-analysis of randomized trials [J].
Coccolini, Federico ;
Nardi, Matteo ;
Montori, Giulia ;
Ceresoli, Marco ;
Celotti, Andrea ;
Cascinu, Stefano ;
Fugazzola, Paola ;
Tomasoni, Matteo ;
Glehen, Olivier ;
Catena, Fausto ;
Yonemura, Yutaka ;
Ansaloni, Luca .
INTERNATIONAL JOURNAL OF SURGERY, 2018, 51 :120-127
[7]   Deep learning radiomic nomogram can predict the number of lymph node metastasis in locally advanced gastric cancer: an international multicenter study [J].
Dong, D. ;
Fang, M. -J. ;
Tang, L. ;
Shan, X. -H. ;
Gao, J. -B. ;
Giganti, F. ;
Wang, R. -P. ;
Chen, X. ;
Wang, X. -X. ;
Palumbo, D. ;
Fu, J. ;
Li, W. -C. ;
Li, J. ;
Zhong, L. -Z. ;
De Cobelli, F. ;
Ji, J. -F. ;
Liu, Z. -Y. ;
Tian, J. .
ANNALS OF ONCOLOGY, 2020, 31 (07) :912-920
[8]   An Intelligent Clinical Decision Support System for Preoperative Prediction of Lymph Node Metastasis in Gastric Cancer [J].
Feng, Qiu-Xia ;
Liu, Chang ;
Qi, Liang ;
Sun, Shu-Wen ;
Song, Yang ;
Yang, Guang ;
Zhang, Yu-Dong ;
Liu, Xi-Sheng .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2019, 16 (07) :952-960
[9]  
Global Burden of Disease Cancer Collaboration, 2015, JAMA Oncol, V1, P505, DOI [10.1001/jamaoncol.2015.0735, DOI 10.1001/JAMAONCOL.2015.0735]
[10]   The 8th edition of the American Joint Committee on Cancer tumor-node-metastasis staging system for gastric cancer is superior to the 7th edition: results from a Chinese mono-institutional study of 1663 patients [J].
Ji, Xin ;
Bu, Zhao-De ;
Yan, Yan ;
Li, Zi-Yu ;
Wu, Ai-Wen ;
Zhang, Lian-Hai ;
Zhang, Ji ;
Wu, Xiao-Jiang ;
Zong, Xiang-Long ;
Li, Shuang-Xi ;
Shan, Fei ;
Jia, Zi-Yu ;
Ji, Jia-Fu .
GASTRIC CANCER, 2018, 21 (04) :643-652